A SPECTRAL GAP PROPERTY FOR SUBGROUPS OF FINITE COVOLUME IN LIE GROUPS

被引:5
|
作者
Bekka, Bachir [1 ]
Cornulier, Yves [1 ]
机构
[1] Univ Rennes 1, CNRS, IRMAR, UMR 6625, F-35042 Rennes, France
关键词
lattices in Lie groups; spectral gap property; spectral geometry of locally symmetric Riemannian manifolds;
D O I
10.4064/cm118-1-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation lambda(G/H) of G on L-2(G/H) has a spectral gap, that is, the restriction of lambda(G/H) to the orthogonal complement of the constants in L-2(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.
引用
收藏
页码:175 / 182
页数:8
相关论文
共 50 条
  • [31] CONJUGACY CLASSES OF FINITE SOLVABLE SUBGROUPS IN LIE-GROUPS
    FRIEDLANDER, EM
    MISLIN, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1988, 21 (02): : 179 - 191
  • [32] SUBGROUPS OF MAXIMAL RANK IN FINITE EXCEPTIONAL GROUPS OF LIE TYPE
    LIEBECK, MW
    SAXL, J
    SEITZ, GM
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1992, 65 : 297 - 325
  • [33] Normalizer property of finite groups with almost simple subgroups
    Hai, Jingjing
    Ling, Xian
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (11): : 4232 - 4237
  • [34] On One Property of Normal Hall Subgroups of Finite Groups
    X. Yi
    B. Cheng
    R. V. Borodich
    S. F. Kamornikov
    Siberian Mathematical Journal, 2025, 66 (2) : 291 - 297
  • [35] On Π-Property and Π-Normality of Subgroups of Finite Groups. II
    B. Li
    T. Foguel
    Algebra and Logic, 2015, 54 : 211 - 225
  • [36] Local spectral gap in simple Lie groups and applications
    Boutonnet, Remi
    Ioana, Adrian
    Golsefidy, Alireza Salehi
    INVENTIONES MATHEMATICAE, 2017, 208 (03) : 715 - 802
  • [37] Local spectral gap in simple Lie groups and applications
    Rémi Boutonnet
    Adrian Ioana
    Alireza Salehi Golsefidy
    Inventiones mathematicae, 2017, 208 : 715 - 802
  • [38] Lie theory of finite simple groups and the Roth property
    Pena, J. Lopez
    Majid, S.
    Rietsch, K.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 163 (02) : 301 - 340
  • [39] ON THE ORDERS OF MAXIMAL-SUBGROUPS OF THE FINITE EXCEPTIONAL GROUPS OF LIE TYPE
    LIEBECK, MW
    SAXL, J
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1987, 55 : 299 - 330
  • [40] REPRESENTATIONS AND MAXIMAL-SUBGROUPS OF FINITE-GROUPS OF LIE TYPE
    SEITZ, GM
    GEOMETRIAE DEDICATA, 1988, 25 (1-3) : 391 - 406