A SPECTRAL GAP PROPERTY FOR SUBGROUPS OF FINITE COVOLUME IN LIE GROUPS

被引:5
|
作者
Bekka, Bachir [1 ]
Cornulier, Yves [1 ]
机构
[1] Univ Rennes 1, CNRS, IRMAR, UMR 6625, F-35042 Rennes, France
关键词
lattices in Lie groups; spectral gap property; spectral geometry of locally symmetric Riemannian manifolds;
D O I
10.4064/cm118-1-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation lambda(G/H) of G on L-2(G/H) has a spectral gap, that is, the restriction of lambda(G/H) to the orthogonal complement of the constants in L-2(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.
引用
收藏
页码:175 / 182
页数:8
相关论文
共 50 条
  • [21] ON A PERMUTABILITY PROPERTY OF SUBGROUPS OF FINITE SOLUBLE GROUPS
    Ballester-Bolinches, A.
    Cossey, John
    Soler-Escriva, X.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (02) : 207 - 221
  • [22] On the II-property of subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Jimenez-Seral, Paz
    Li, Xianhua
    Li, Yangming
    ARCHIV DER MATHEMATIK, 2015, 105 (04) : 301 - 305
  • [23] A spectral gap theorem in simple Lie groups
    Yves Benoist
    Nicolas de Saxcé
    Inventiones mathematicae, 2016, 205 : 337 - 361
  • [24] The finite groups with IC-property of subgroups
    Gao, Yaxin
    Li, Xianhua
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) : 2139 - 2148
  • [25] A spectral gap theorem in simple Lie groups
    Benoist, Yves
    de Saxce, Nicolas
    INVENTIONES MATHEMATICAE, 2016, 205 (02) : 337 - 361
  • [26] Finite Sylow subgroups in simple locally finite groups of Lie type
    Kuzucuoglu, M
    Mazurov, VD
    SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (05) : 863 - 866
  • [27] On finite subgroups of compact Lie groups and fundamental groups of Riemannian manifolds
    Su, Xiaole
    Wang, Yusheng
    ADVANCES IN GEOMETRY, 2011, 11 (02) : 191 - 199
  • [28] Finite Sylow Subgroups in Simple Locally Finite Groups of Lie Type
    M. Kuzucuoglu
    V. D. Mazurov
    Siberian Mathematical Journal, 2005, 46 : 863 - 866
  • [29] SPORADIC SIMPLE SUBGROUPS OF FINITE EXCEPTIONAL GROUPS OF LIE TYPE
    KLEIDMAN, PB
    WILSON, RA
    JOURNAL OF ALGEBRA, 1993, 157 (02) : 316 - 330
  • [30] Breaking classical Lie groups to finite subgroups - an automated approach
    Fallbacher, Maximilian
    NUCLEAR PHYSICS B, 2015, 898 : 229 - 247