A SPECTRAL GAP PROPERTY FOR SUBGROUPS OF FINITE COVOLUME IN LIE GROUPS

被引:5
|
作者
Bekka, Bachir [1 ]
Cornulier, Yves [1 ]
机构
[1] Univ Rennes 1, CNRS, IRMAR, UMR 6625, F-35042 Rennes, France
关键词
lattices in Lie groups; spectral gap property; spectral geometry of locally symmetric Riemannian manifolds;
D O I
10.4064/cm118-1-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation lambda(G/H) of G on L-2(G/H) has a spectral gap, that is, the restriction of lambda(G/H) to the orthogonal complement of the constants in L-2(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.
引用
收藏
页码:175 / 182
页数:8
相关论文
共 50 条