Bounds for attractors and the existence of homoclinic orbits in the Lorenz system

被引:103
|
作者
Leonov, GA
机构
来源
关键词
D O I
10.1016/S0021-8928(01)00004-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Frequency estimates are derived for the Lyapunov dimension of attractors of non-linear dynamical systems. A theorem on the localization of global attractors is proved for the Lorenz system. This theorem is applied to obtain upper bounds for the Lyapunov dimension of attractors and to prove the existence of homoclinic orbits in the Lorenz system. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 50 条
  • [11] EXISTENCE OF A HOMOCLINIC ORBIT OF THE LORENZ SYSTEM BY PRECISE SHOOTING
    HASSARD, B
    ZHANG, JH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (01) : 179 - 196
  • [12] Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations
    Huang, DB
    PHYSICS LETTERS A, 2003, 309 (3-4) : 248 - 253
  • [13] Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion
    Leonov, G. A.
    Kuznetsov, N. V.
    Mokaev, T. N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08): : 1421 - 1458
  • [14] CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS
    DENG, B
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (04): : 823 - 841
  • [15] Nonsymmetric Lorenz attractors from homoclinic bifurcation
    Robinson, C
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (01) : 119 - 141
  • [16] Existence of homoclinic orbits for a higher order difference system
    Liu, Xia
    Zhou, Tao
    Shi, Haiping
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1842 - 1853
  • [17] Existence of orbits homoclinic to an elliptic equilibrium, for a reversible system
    Iooss, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 993 - 997
  • [18] A Family of Periodic Motions to Chaos with Infinite Homoclinic Orbits in the Lorenz System
    Guo, Siyu
    Luo, Albert C. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (14) : 3382 - 3437
  • [19] Existence of optimal homoclinic orbits
    Hudon, N.
    Hoffner, K.
    Guay, M.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3829 - 3833
  • [20] HOMOCLINIC AND HETEROCLINIC ORBITS AND BIFURCATIONS OF A NEW LORENZ-TYPE SYSTEM
    Li, Xianyi
    Wang, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2695 - 2712