Existence of orbits homoclinic to an elliptic equilibrium, for a reversible system

被引:13
|
作者
Iooss, G
机构
关键词
D O I
10.1016/S0764-4442(97)87874-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a reversible vector field in R-4, where the origin is a critical point, and where the differential at the origin has a pair of double non semisimple pure imaginary eigenvalues +/-i omega. We assume that the coefficient epsilon of a cubic term of the normal form is positive and close to 0, and that a certain coefficient of order 5 is negative. Then we show that there exist two reversible orbits homoclinic to the origin, of size root epsilon and such that they oscillate with a damping in 1/t when t tends towards +/-infinity. For obtaining such a result, we give explicitly the inverse of the linearized operator around the reversible homoclinics of the normal form, and solve the problem by a fired point argument.
引用
收藏
页码:993 / 997
页数:5
相关论文
共 50 条
  • [1] Coalescence of Reversible Homoclinic Orbits Causes Elliptic Resonance
    Fiedler, B.
    Turaev, D.
    [J]. International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 6 (06):
  • [2] Coalescence of reversible homoclinic orbits causes elliptic resonance
    Fiedler, B
    Turaev, D
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1007 - 1027
  • [3] Cascades of reversible homoclinic orbits to a saddle-focus equilibrium
    Harterich, J
    [J]. PHYSICA D, 1998, 112 (1-2): : 187 - 200
  • [4] Existence of homoclinic orbits for a higher order difference system
    Liu, Xia
    Zhou, Tao
    Shi, Haiping
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1842 - 1853
  • [5] Attractors estimate and existence of homoclinic orbits in the Lorenz system
    Leonov, G.A.
    [J]. Prikladnaya Matematika i Mekhanika, 2001, 65 (01):
  • [6] Bounds for attractors and the existence of homoclinic orbits in the Lorenz system
    Leonov, GA
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (01): : 19 - 32
  • [7] Existence of optimal homoclinic orbits
    Hudon, N.
    Hoffner, K.
    Guay, M.
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3829 - 3833
  • [8] The existence of homoclinic orbits in Hamiltonian inclusions
    Hu, JX
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (02) : 169 - 180
  • [9] The existence of homoclinic orbits in the Lorenz system via the undetermined coefficient method
    Song, Juan
    Niu, Yanmin
    Li, Xiong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 497 - 515
  • [10] The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof
    Wilczak, Daniel
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (04) : 495 - 535