Estimation of the multifractional function and the stability index of linear multifractional stable processes

被引:2
|
作者
Thi-To-Nhu Dang [1 ]
机构
[1] Univ Danang, Univ Econ, 71 Ngu Hanh Son St, Danang 550000, Vietnam
关键词
Stable processes; multifractional processes; negative power variations; multifractional function; SELF-SIMILARITY; HURST FUNCTION; IDENTIFICATION;
D O I
10.1051/ps/2019012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we are interested in multifractional stable processes where the self-similarity index H becomes time-dependent, while the stability index alpha remains constant. Using beta- negative power variations ( - 1/2 < beta < 0), we propose estimators for the value at a fixed time of the multifractional function H which satisfies an eta-Holder condition and for alpha in two cases: multifractional Brownian motion (alpha = 2) and linear multifractional stable motion (0 < alpha < 2). We get the consistency of our estimates for the underlying processes together with the rate of convergence.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Linear multifractional stable sheets in the broad sense: Existence and joint continuity of local times
    Ding, Yujia
    Peng, Qidi
    Xiao, Yimin
    BERNOULLI, 2023, 29 (01) : 785 - 814
  • [32] Multifractional, Multistable, and Other Processes with Prescribed Local Form
    Falconer, K. J.
    Vehel, J. Levy
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) : 375 - 401
  • [33] INCREMENTAL MOMENTS AND HOLDER EXPONENTS OF MULTIFRACTIONAL MULTISTABLE PROCESSES
    Le Guevel, Ronan
    Vehel, Jacques Levy
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 135 - 178
  • [34] Continuous Gaussian Multifractional Processes with Random Pointwise Holder Regularity
    Ayache, Antoine
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (01) : 72 - 93
  • [35] Multifractional, Multistable, and Other Processes with Prescribed Local Form
    K. J. Falconer
    J. Lévy Véhel
    Journal of Theoretical Probability, 2009, 22 : 375 - 401
  • [36] A general class of multifractional processes and stock price informativeness
    Peng, Qidi
    Zhao, Ran
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 248 - 267
  • [37] TEMPERED FRACTIONAL MULTISTABLE MOTION AND TEMPERED MULTIFRACTIONAL STABLE MOTION
    Fan, Xiequan
    Vehel, Jacques Levy
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 37 - 67
  • [38] Real harmonizable multifractional stable process and its local properties
    Dozzi, Marco
    Shevchenko, Georgiy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (07) : 1509 - 1523
  • [39] Tracking performance and robustness analysis of Hurst estimators for multifractional processes
    Sheng, H.
    Chen, Y. Q.
    Qiu, T. S.
    IET SIGNAL PROCESSING, 2012, 6 (03) : 213 - 226
  • [40] On the prediction of power outage length based on linear multifractional L<acute accent>evy stable motion
    Song, Wanqing
    Deng, Wujin
    Cattani, Piercarlo
    Qi, Deyu
    Yang, Xianhua
    Yao, Xuyin
    Chen, Dongdong
    Yan, Wenduan
    Zio, Enrico
    PATTERN RECOGNITION LETTERS, 2024, 181 : 120 - 125