Estimation of the multifractional function and the stability index of linear multifractional stable processes

被引:2
|
作者
Thi-To-Nhu Dang [1 ]
机构
[1] Univ Danang, Univ Econ, 71 Ngu Hanh Son St, Danang 550000, Vietnam
关键词
Stable processes; multifractional processes; negative power variations; multifractional function; SELF-SIMILARITY; HURST FUNCTION; IDENTIFICATION;
D O I
10.1051/ps/2019012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we are interested in multifractional stable processes where the self-similarity index H becomes time-dependent, while the stability index alpha remains constant. Using beta- negative power variations ( - 1/2 < beta < 0), we propose estimators for the value at a fixed time of the multifractional function H which satisfies an eta-Holder condition and for alpha in two cases: multifractional Brownian motion (alpha = 2) and linear multifractional stable motion (0 < alpha < 2). We get the consistency of our estimates for the underlying processes together with the rate of convergence.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] Uniformly and strongly consistent estimation for the random Hurst function of a multifractional process
    Ayache, Antoine
    Bouly, Florent
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 1587 - 1614
  • [22] Regularity and identification of generalized multifractional Gaussian processes
    Ayache, A
    Benassi, A
    Cohen, S
    Véhel, JL
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 290 - 312
  • [23] Identifying the multifractional function of a Gaussian process
    Benassi, A
    Cohen, S
    Istas, J
    STATISTICS & PROBABILITY LETTERS, 1998, 39 (04) : 337 - 345
  • [24] Spectral Analysis for Some Multifractional Gaussian Processes
    Karol, A., I
    Nazarov, A., I
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (04) : 488 - 500
  • [25] Spectral Analysis for Some Multifractional Gaussian Processes
    A. I. Karol
    A. I. Nazarov
    Russian Journal of Mathematical Physics, 2021, 28 : 488 - 500
  • [26] Multifractional Hermite processes: Definition and first properties
    Loosveldt, L.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 165 : 465 - 500
  • [27] ON LOCAL PATH BEHAVIOR OF SURGAILIS MULTIFRACTIONAL PROCESSES
    Ayache, A.
    Bouly, F.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 106 : 3 - 26
  • [28] Reconciling multifractal and multifractional processes in financial modeling
    Bianchi, Sergio
    Pianese, Augusto
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 1268 - 1271
  • [29] Estimation of the global regularity of a multifractional Brownian motion
    Lebovits, Joachim
    Podolskij, Mark
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 78 - 98
  • [30] LOCAL ESTIMATION OF THE HURST INDEX OF MULTIFRACTIONAL BROWNIAN MOTION BY INCREMENT RATIO STATISTIC METHOD
    Bertrand, Pierre Raphael
    Fhima, Mehdi
    Guillin, Arnaud
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 307 - 327