Quantum cascade laser on silicon

被引:127
|
作者
Spott, Alexander [1 ]
Peters, Jon [1 ]
Davenport, Michael L. [1 ]
Stanton, Eric J. [1 ]
Merritt, Charles D. [2 ]
Bewley, William W. [2 ]
Vurgaftman, Igor [2 ]
Kim, Chul Soo [2 ]
Meyer, Jerry R. [2 ]
Kirch, Jeremy [3 ]
Mawst, Luke J. [3 ]
Botez, Dan [3 ]
Bowers, John E. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Naval Res Lab, Code 5613, Washington, DC 20375 USA
[3] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
来源
OPTICA | 2016年 / 3卷 / 05期
基金
美国国家科学基金会;
关键词
WAVE-GUIDES;
D O I
10.1364/OPTICA.3.000545
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The mid-infrared spectral region, 2-20 mu m, is of great interest for sensing and detection applications, in part because the vibrational transition energies of numerous molecules fall in that region. Silicon photonics is a promising technology to address many of these applications on a single integrated, low-cost platform. Near-infrared light sources, heterogeneously integrated on silicon, have existed for more than a decade, and there have been numerous incorporations of mid-infrared optical devices on silicon platforms. However, no lasers fully integrated onto silicon have previously been demonstrated for wavelengths longer than 2.0 mu m. Here we report, to the best of our knowledge, the first quantum cascade lasers on silicon emitting 4.8 mu m light, integrated with silicon-on-nitride-on-insulator (SONOI) waveguides, and operating in pulsed mode at room temperature. The broadband and versatile nature of both quantum cascade lasers and the SONOI platform suggests that this development can be expanded to build photonic integrated circuits throughout the near- and mid-infrared on the same chip. (C) 2016 Optical Society of America
引用
收藏
页码:545 / 551
页数:7
相关论文
共 50 条
  • [31] Quantum Cascade Laser Frequency Combs
    Faist, Jerome
    Villares, Gustavo
    Scalari, Giacomo
    Rosch, Markus
    Bonzon, Christopher
    Hugi, Andreas
    Beck, Mattias
    NANOPHOTONICS, 2016, 5 (02) : 272 - 291
  • [32] Narrow linewidth quantum cascade laser
    Zhao, Gang
    Bailey, D. Michelle
    Fleisher, Adam J.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [33] On the kinetic theory of the quantum cascade laser
    Elesin, V.F., 1600, Pergamon Press Inc, Tarrytown, NY, United States (96):
  • [34] Quantum cascade laser lives on the edge
    Mittal, Sunil
    Waks, Edo
    NATURE, 2020, 578 (7794) : 219 - 220
  • [35] Lucent licenses quantum cascade laser
    Anon
    Photonics Spectra, 2000, 34 (08)
  • [36] Quantum cascade laser progress and outlook
    Razeghi, M
    Yu, JS
    Evans, A
    Slivken, S
    Darvish, SR
    David, J
    Nguyen, J
    Gokden, B
    Khosravani, S
    OPTICALLY BASED BIOLOGICAL AND CHEMICAL SENSING FOR DEFENCE, 2004, 5617 : 221 - 232
  • [37] External cavity quantum cascade laser
    Hugi, Andreas
    Maulini, Richard
    Faist, Jerome
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (08)
  • [38] Plasmonic Quantum Cascade Laser Antenna
    Yu, Nanfang
    Cubukcu, Ertugrul
    Diehl, Laurent
    Crozier, Kenneth B.
    Capasso, Federico
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 1761 - 1762
  • [39] Quantum cascade laser THz metrology
    De Natale, P.
    Consolino, L.
    Mazzotti, D.
    Campa, A.
    Ravaro, M.
    Vitiello, M. S.
    Bartalini, S.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES XII, 2015, 9370
  • [40] Microscopic model for a quantum cascade laser
    Kira, M
    PHYSICAL REVIEW B, 1996, 53 (23): : 15789 - 15801