Quantum cascade laser on silicon

被引:127
|
作者
Spott, Alexander [1 ]
Peters, Jon [1 ]
Davenport, Michael L. [1 ]
Stanton, Eric J. [1 ]
Merritt, Charles D. [2 ]
Bewley, William W. [2 ]
Vurgaftman, Igor [2 ]
Kim, Chul Soo [2 ]
Meyer, Jerry R. [2 ]
Kirch, Jeremy [3 ]
Mawst, Luke J. [3 ]
Botez, Dan [3 ]
Bowers, John E. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Naval Res Lab, Code 5613, Washington, DC 20375 USA
[3] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
来源
OPTICA | 2016年 / 3卷 / 05期
基金
美国国家科学基金会;
关键词
WAVE-GUIDES;
D O I
10.1364/OPTICA.3.000545
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The mid-infrared spectral region, 2-20 mu m, is of great interest for sensing and detection applications, in part because the vibrational transition energies of numerous molecules fall in that region. Silicon photonics is a promising technology to address many of these applications on a single integrated, low-cost platform. Near-infrared light sources, heterogeneously integrated on silicon, have existed for more than a decade, and there have been numerous incorporations of mid-infrared optical devices on silicon platforms. However, no lasers fully integrated onto silicon have previously been demonstrated for wavelengths longer than 2.0 mu m. Here we report, to the best of our knowledge, the first quantum cascade lasers on silicon emitting 4.8 mu m light, integrated with silicon-on-nitride-on-insulator (SONOI) waveguides, and operating in pulsed mode at room temperature. The broadband and versatile nature of both quantum cascade lasers and the SONOI platform suggests that this development can be expanded to build photonic integrated circuits throughout the near- and mid-infrared on the same chip. (C) 2016 Optical Society of America
引用
收藏
页码:545 / 551
页数:7
相关论文
共 50 条
  • [21] The alpha factor of a quantum cascade laser
    Pereira, M. F.
    Nelander, R.
    Wacker, A.
    NUSOD '08: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2008, : 117 - 117
  • [22] Polarization control of a quantum cascade laser
    Dhirhe, D.
    Slight, T. J.
    Holmes, B. M.
    Hutchings, D. C.
    Ironside, C. N.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [23] Modeling of the Quantum Cascade Laser Characteristics
    Timofeyev, Vladimir
    Shalenko, Igor
    2016 IEEE 36TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2016, : 98 - 100
  • [24] Microcavity THz quantum cascade laser
    Fasching, G
    Benz, A
    Zobl, R
    Andrews, AM
    Roch, T
    Schrenk, W
    Strasser, G
    Tamosiunas, V
    Unterrainer, K
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2): : 316 - 319
  • [25] Bloch gain in a quantum cascade laser
    Willenberg, H
    Scalari, G
    Döhler, GH
    Faist, J
    THZ 2002: IEEE TENTH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS PROCEEDINGS, 2002, : 7 - 8
  • [26] Mode structure of a quantum cascade laser
    Bogdanov, A. A.
    Suris, R. A.
    PHYSICAL REVIEW B, 2011, 83 (12)
  • [27] Plasmonic quantum cascade laser antenna
    Yu, Nanfang
    Cubukcu, Ertugrul
    Diehl, Laurent
    Belkin, Mikhail A.
    Crozier, Kenneth B.
    Capasso, Federico
    Bour, David
    Corzine, Scott
    Höfler, Gloria
    APPLIED PHYSICS LETTERS, 2007, 91 (17)
  • [28] Kinetic theory of quantum cascade laser
    Elesin, VF
    Kopaev, YV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1995, 108 (06): : 2186 - 2201
  • [29] Quantum Cascade Laser With Unilateral Grating
    Vaitiekus, Deivis
    Revin, Dmitry G.
    Kennedy, Kenneth L.
    Zhang, Shiyong Y.
    Cockburn, John W.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (23) : 2112 - 2114
  • [30] 30 years of the quantum cascade laser
    Scalari, Giacomo
    Faist, Jerome
    COMMUNICATIONS PHYSICS, 2024, 7 (01):