The existence of solution for viscous Camassa-Holm equations on bounded domain in five dimensions

被引:3
|
作者
Yu, Yongjiang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Viscous Camassa-Holm equations; Weak solution; Strong solution; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; REGULARITY; SPACES; EULER; DECAY;
D O I
10.1016/j.jmaa.2015.04.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of global weak solution and local existence of strong solution for five-dimensional viscous Camassa-Holm equations on bounded domain are proved in this note. The global existence of strong solution is also proved when small initial data is given. (C) 2015 Elsevier. Inc. All rights reserved.
引用
收藏
页码:849 / 872
页数:24
相关论文
共 50 条
  • [31] Global wellposedness of cubic Camassa-Holm equations
    Zhang, Qingtian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 61 - 73
  • [32] New bounded traveling waves of Camassa-Holm equation
    Liu, ZG
    Li, QX
    Lin, QM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (10): : 3541 - 3556
  • [33] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu Zhao
    Changzheng Qu
    Chinese Annals of Mathematics, Series B, 2020, 41 : 407 - 418
  • [34] Optimal control of the viscous generalized Camassa-Holm equation
    Shen, Chunyu
    Gao, Anna
    Tian, Lixin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 1835 - 1846
  • [35] The Pullback Attractors for the Nonautonomous Camassa-Holm Equations
    Wu, Delin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [36] EMBEDDING CAMASSA-HOLM EQUATIONS IN INCOMPRESSIBLE EULER
    Natale, Andrea
    Vialard, Francois-Xavier
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 205 - 223
  • [37] Approximate analytical solution of the time-fractional Camassa-Holm, modified Camassa-Holm, and Degasperis-Procesi equations by homotopy perturbation method
    Gupta, P. K.
    Singh, M.
    Yildirim, A.
    SCIENTIA IRANICA, 2016, 23 (01) : 155 - 165
  • [38] Numerical study of fractional Camassa-Holm equations
    Klein, Christian
    Oruc, Goksu
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 457
  • [39] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Zhao, Lu
    Qu, Changzheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (03) : 407 - 418
  • [40] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu ZHAO
    Changzheng QU
    ChineseAnnalsofMathematics,SeriesB, 2020, (03) : 407 - 418