The existence of solution for viscous Camassa-Holm equations on bounded domain in five dimensions

被引:3
|
作者
Yu, Yongjiang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Viscous Camassa-Holm equations; Weak solution; Strong solution; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; REGULARITY; SPACES; EULER; DECAY;
D O I
10.1016/j.jmaa.2015.04.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of global weak solution and local existence of strong solution for five-dimensional viscous Camassa-Holm equations on bounded domain are proved in this note. The global existence of strong solution is also proved when small initial data is given. (C) 2015 Elsevier. Inc. All rights reserved.
引用
收藏
页码:849 / 872
页数:24
相关论文
共 50 条
  • [21] Optimal control of the viscous Camassa-Holm equation
    Tian, Lixin
    Shen, Chunyu
    Ding, Danping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) : 519 - 530
  • [22] Attractor for a Viscous Coupled Camassa-Holm Equation
    Tian, Lixin
    Xu, Ying
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [23] Higher Dimensional Camassa-Holm Equations
    Lou, S. Y.
    Jia, Man
    Hao, Xia-Zhi
    CHINESE PHYSICS LETTERS, 2023, 40 (02)
  • [24] A stochastic variational approach to the viscous Camassa-Holm and Leray-alpha equations
    Cruzeiro, Ana Bela
    Liu, Guoping
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (01) : 1 - 19
  • [25] An optimal control problem of the 3D viscous Camassa-Holm equations
    Cung The Anh
    Dang Thanh Son
    OPTIMIZATION, 2021, 70 (01) : 3 - 25
  • [26] THE RELATION OF TWO-DIMENSIONAL VISCOUS CAMASSA-HOLM EQUATIONS AND THE NAVIER-STOKES EQUATIONS
    杨灵娥
    纪艳珊
    郭柏灵
    Acta Mathematica Scientia, 2009, 29 (01) : 65 - 73
  • [27] THE RELATION OF TWO-DIMENSIONAL VISCOUS CAMASSA-HOLM EQUATIONS AND THE NAVIER-STOKES EQUATIONS
    Yang Linge
    Ji Yanshan
    Guo Boling
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (01) : 65 - 73
  • [28] Local null controllability of viscous Camassa-Holm equation
    Mitra, Debanjana
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 627 - 657
  • [29] On the Camassa-Holm and Hunter-Saxton equations
    Holden, H
    European Congress of Mathematics, 2005, : 173 - 200
  • [30] Derivation of the Camassa-Holm equations for elastic waves
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    PHYSICS LETTERS A, 2015, 379 (12-13) : 956 - 961