A new lower bound for the on-line coloring of intervals with bandwidth

被引:1
|
作者
Mikos, Patryk [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
关键词
On-line coloring; Interval graphs; Weighted intervals; PACKING;
D O I
10.1016/j.tcs.2017.10.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The on-line interval coloring and its variants are important combinatorial problems with many applications in network multiplexing, resource allocation and job scheduling. In this paper we present a new lower bound of 4.1626 for the asymptotic competitive ratio for the on-line coloring of intervals with bandwidth which improves the best known lower bound of 24/7. For the on-line coloring of unit intervals with bandwidth we improve the lower bound of 1.831 to 2. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 50 条
  • [1] Online coloring of intervals with bandwidth
    Adamy, U
    Erlebach, T
    [J]. APPROXIMATION AND ONLINE ALGORITHMS, 2004, 2909 : 1 - 12
  • [2] A new algorithm for on-line coloring bipartite graphs
    Broersma, Hajo J.
    Capponi, Agostino
    Paulusma, Daniel
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 72 - 91
  • [3] A lower bound for randomized on-line multiprocessor scheduling
    Sgall, J
    [J]. INFORMATION PROCESSING LETTERS, 1997, 63 (01) : 51 - 55
  • [4] A lower bound for on-line ranking number of a path
    Bruoth, Erik
    Hornak, Mirko
    [J]. DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1347 - 1355
  • [5] Lower Bounds for On-line Interval Coloring with Vector and Cardinality Constraints
    Gutowski, Grzegorz
    Mikos, Patryk
    [J]. SOFSEM 2017: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2017, 10139 : 325 - 335
  • [6] An improved algorithm for online coloring of intervals with bandwidth
    Azar, Yossi
    Fiat, Amos
    Levy, Meital
    Narayanaswamy, N. S.
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 363 (01) : 18 - 27
  • [7] Coloring graphs on-line
    Kierstead, HA
    [J]. ONLINE ALGORITHMS, 1998, 1442 : 281 - 305
  • [8] New Lower Bound for the Minimum Sum Coloring Problem
    Lecat, Clement
    Lucet, Corinne
    Li, Chu-Min
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 853 - 859
  • [9] A lower bound for on-line scheduling on uniformly related machines
    Epstein, L
    Sgall, J
    [J]. OPERATIONS RESEARCH LETTERS, 2000, 26 (01) : 17 - 22
  • [10] On-line coloring κ-colorable graphs
    Kierstead, HA
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 105 (1) : 93 - 104