A lower bound for on-line ranking number of a path

被引:3
|
作者
Bruoth, Erik
Hornak, Mirko
机构
[1] Safarik Univ, Ctr Appl Informat, Kosice 04001, Slovakia
[2] Safarik Univ, Inst Math, Kosice 04001, Slovakia
关键词
ranking; ranking number; on-line ranking number; path;
D O I
10.1016/j.disc.2005.11.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-ranking of a graph G is a mapping phi : V (G) -> {1,...,k} such that any path with endvertices x and y satisfying x not equal y and phi(x) = phi(y) contains a vertex z with phi(z) > phi(x). The ranking number chi(*)(r)(G) of G is the minimum k admitting a k-ranking of G. The on-line ranking number chi(*)(r) (G) of G is the corresponding on-line invariant; in that case vertices of G are coming one by one so that a partial ranking has to be chosen by considering only the structure of the subgraph of G induced by the present vertices. It is known that [log(2) n] + 1 = chi(r)(P-n) <= chi(*)(r)(Pn) <= 2 [log(2) n] + 1. In this paper it is proved that chi(*)(r)(P-n) > 1.619 log(2) n - 1. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1347 / 1355
页数:9
相关论文
共 50 条
  • [1] A lower bound on the Hamiltonian path completion number of a line graph
    Detti, Paolo
    Meloni, Carlo
    Pranzo, Marco
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 296 - 304
  • [2] A note on on-line ranking number of graphs
    G. Semanišin
    R. Soták
    [J]. Czechoslovak Mathematical Journal, 2006, 56 : 591 - 599
  • [3] A note on on-line ranking number of graphs
    Semanisin, G.
    Sotak, R.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) : 591 - 599
  • [4] A lower bound for randomized on-line multiprocessor scheduling
    Sgall, J
    [J]. INFORMATION PROCESSING LETTERS, 1997, 63 (01) : 51 - 55
  • [5] A new lower bound for the on-line coloring of intervals with bandwidth
    Mikos, Patryk
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 708 : 96 - 100
  • [6] A lower bound for on-line scheduling on uniformly related machines
    Epstein, L
    Sgall, J
    [J]. OPERATIONS RESEARCH LETTERS, 2000, 26 (01) : 17 - 22
  • [7] A lower bound for the on-line preemptive machine scheduling with lp norm
    Shuai, Tianping
    Du, Donglei
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 661 - +
  • [8] On-line ranking algorithms for trees
    Lee, CW
    Juan, JST
    [J]. FCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Science, 2005, : 46 - 51
  • [9] On-line Ranking of Split Graphs
    Borowiecki, Piotr
    Dereniowski, Dariusz
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (02): : 195 - 214
  • [10] ON-LINE VERTEX RANKING OF TREES
    McDonald, Daniel C.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 145 - 156