On the Chaplygin system on the sphere with velocity dependent potential

被引:18
|
作者
Tsiganov, A. V. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
关键词
Lax matrices; Hamilton-Jacobi equation; Separation of variables; Integrable systems on the sphere; LAX PAIRS; DEFORMATIONS; KOWALEVSKI;
D O I
10.1016/j.geomphys.2015.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss how to get variables of separation, separated relations and the Lax matrix for the Chaplygin system on the sphere with velocity dependent potential starting with the Lax matrix for other integrable system separable in elliptic coordinates.on the sphere. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [21] On the generalized Chaplygin system
    Tsiganov A.V.
    Journal of Mathematical Sciences, 2010, 168 (6) : 901 - 911
  • [22] Emergence and mitigation of extreme events in a parametrically driven system with velocity-dependent potential
    S. Sudharsan
    A. Venkatesan
    P. Muruganandam
    M. Senthilvelan
    The European Physical Journal Plus, 136
  • [23] Emergence and mitigation of extreme events in a parametrically driven system with velocity-dependent potential
    Sudharsan, S.
    Venkatesan, A.
    Muruganandam, P.
    Senthilvelan, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [24] VELOCITY DEPENDENT POTENTIAL AND DEUTERON STRIPPING REACTIONS
    ABULMAGD, AY
    ELNADI, M
    PHYSICS LETTERS, 1965, 14 (03): : 204 - &
  • [25] AN OCCURRENCE OF AN EFFECTIVE ANHARMONIC VELOCITY DEPENDENT POTENTIAL
    GUNN, JMF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (11): : 1959 - 1969
  • [26] Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball
    Bustamante, Miguel D.
    Lynch, Peter
    REGULAR & CHAOTIC DYNAMICS, 2019, 24 (05): : 511 - 524
  • [27] Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere
    Garcia-Naranjo, Luis C.
    REGULAR & CHAOTIC DYNAMICS, 2019, 24 (05): : 450 - 463
  • [28] Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere
    Luis C. García-Naranjo
    Regular and Chaotic Dynamics, 2019, 24 : 450 - 463
  • [29] Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball
    Miguel D. Bustamante
    Peter Lynch
    Regular and Chaotic Dynamics, 2019, 24 : 511 - 524
  • [30] Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere
    Bizyaev, Ivan A.
    Mamaev, Ivan S.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 126