Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere

被引:1
|
作者
Garcia-Naranjo, Luis C. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Dept Matemat & Mecan, Apdo Postal 20-126, Mexico City 01000, DF, Mexico
来源
REGULAR & CHAOTIC DYNAMICS | 2019年 / 24卷 / 05期
关键词
non-holonomic dynamics; integrability; quasi-periodicity; symmetry; singular reduction; DYNAMICS;
D O I
10.1134/S1560354719050022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the n-dimensional Chaplygin sphere under the assumption that the mass distribution of the sphere is axisymmetric. We prove that, for initial conditions whose angular momentum about the contact point is vertical, the dynamics is quasi-periodic. For n = 4 we perform the reduction by the associated SO(3) symmetry and show that the reduced system is integrable by the Euler-Jacobi theorem.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 50 条
  • [1] Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere
    Luis C. García-Naranjo
    [J]. Regular and Chaotic Dynamics, 2019, 24 : 450 - 463
  • [2] Hamiltonization and Integrability of the Chaplygin Sphere in ℝn
    Božidar Jovanović
    [J]. Journal of Nonlinear Science, 2010, 20 : 569 - 593
  • [3] Integrability and Dynamics of the n-Dimensional Symmetric Veselova Top
    Fasso, Francesco
    Garcia-Naranjo, Luis C.
    Montaldi, James
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (03) : 1205 - 1246
  • [4] Integrability and Dynamics of the n-Dimensional Symmetric Veselova Top
    Francesco Fassò
    Luis C. García-Naranjo
    James Montaldi
    [J]. Journal of Nonlinear Science, 2019, 29 : 1205 - 1246
  • [5] Hamiltonization and Integrability of the Chaplygin Sphere in Rn
    Jovanovic, Bozidar
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (05) : 569 - 593
  • [6] TENSOR FIELDS ON AN N-DIMENSIONAL SPHERE
    GLAZUNOV, NI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1963, 148 (02): : 264 - &
  • [7] AN EXTREMUM PROPERTY OF THE N-DIMENSIONAL SPHERE
    ROBNIK, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (10): : L349 - L351
  • [8] Darboux theory of integrability on the Clifford n-dimensional torus
    Llibre, Jaume
    Valls, Claudia
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 192
  • [9] INTEGRABILITY OF 2 INTERACTING N-DIMENSIONAL RIGID BODIES
    PERELOMOV, AM
    RAGNISCO, O
    WOJCIECHOWSKI, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 102 (04) : 573 - 583
  • [10] Global Exponential Stabilization on the n-Dimensional Sphere
    Casau, Pedro
    Mayhew, Christopher G.
    Sanfelice, Ricardo G.
    Silvestre, Carlos
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3218 - 3223