Packing Biomolecules into Sierpinski Triangles with Global Organizational Chirality

被引:23
|
作者
Li, Chao [1 ,2 ]
Li, Ruoning [1 ,2 ]
Xu, Zhen [1 ,2 ]
Li, Jie [1 ,2 ]
Zhang, Xue [1 ,2 ]
Li, Na [1 ,2 ]
Zhang, Yajie [1 ,2 ]
Shen, Ziyong [1 ,2 ]
Tang, Hao [3 ]
Wang, Yongfeng [1 ,2 ,4 ]
机构
[1] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Carbon Based Elect, Dept Elect, Beijing 100871, Peoples R China
[3] CEMES CNRS, F-31055 Toulouse, France
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-CHEMISTRY; CRYSTALS; FRACTALS; CONSTRUCTION; GROWTH; DESIGN; CHAINS;
D O I
10.1021/jacs.1c05949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fractals are found in nature and play important roles in biological functions. However, it is challenging to controllably prepare biomolecule fractals. In this study, a series of Sierpinski triangles with global organizational chirality is successfully constructed by the coassembly of L-tryptophan and 1,3-bi(4-pyridyl)benzene molecules on Ag(111). The chirality is switched when replacing L-tryptophan by D-tryptophan. The fractal structures are characterized by low-temperature scanning tunneling microscopy at the single-molecule level. Density functional theory calculations reveal that intermolecular hydrogen bonds stabilize the Sierpinski triangles.
引用
收藏
页码:14417 / 14421
页数:5
相关论文
共 50 条
  • [41] Packing and covering directed triangles asymptotically
    Cooper, Jacob W.
    Grzesik, Andrzej
    Kabela, Adam
    Kral', Daniel
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [42] Packing and Covering Triangles in Planar Graphs
    Cui, Qing
    Haxell, Penny
    Ma, Will
    GRAPHS AND COMBINATORICS, 2009, 25 (06) : 817 - 824
  • [43] Packing triangles in a graph and its complement
    Keevash, P
    Sudakov, B
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 203 - 216
  • [44] Packing triangles in bounded degree graphs
    Caprara, A
    Rizzi, R
    INFORMATION PROCESSING LETTERS, 2002, 84 (04) : 175 - 180
  • [45] OPTIMAL TRANSLATIVE PACKING OF HOMOTHETIC TRIANGLES
    Januszewski, Janusz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2009, 46 (02) : 185 - 203
  • [46] Packing and covering triangles in tripartite graphs
    Haxell, PE
    Kohayakawa, Y
    GRAPHS AND COMBINATORICS, 1998, 14 (01) : 1 - 10
  • [47] A kinetic model for the origin of chirality of biomolecules
    Gutman, I.
    Todorovic, D.
    Journal of Supercritical Fluids, 1994, 790 (04):
  • [48] Packing and Covering Triangles in Planar Graphs
    Qing Cui
    Penny Haxell
    Will Ma
    Graphs and Combinatorics, 2009, 25 : 817 - 824
  • [49] Growth of covalently bonded Sierpinski triangles up to the second generation
    Gu, Gaochen
    Li, Na
    Liu, Liwei
    Zhang, Xue
    Wu, Qimeng
    Nieckarz, Damian
    Szabelski, Pawel
    Peng, Lianmao
    Teo, Boon K.
    Hou, Shimin
    Wang, Yongfeng
    RSC ADVANCES, 2016, 6 (71): : 66548 - 66552
  • [50] NON-CONVEXITY OF THE DIMENSION FUNCTION FOR SIERPINSKI PEDAL TRIANGLES
    Ding, Jiu
    Tang, Yifa
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (02) : 191 - 195