Packing Biomolecules into Sierpinski Triangles with Global Organizational Chirality

被引:23
|
作者
Li, Chao [1 ,2 ]
Li, Ruoning [1 ,2 ]
Xu, Zhen [1 ,2 ]
Li, Jie [1 ,2 ]
Zhang, Xue [1 ,2 ]
Li, Na [1 ,2 ]
Zhang, Yajie [1 ,2 ]
Shen, Ziyong [1 ,2 ]
Tang, Hao [3 ]
Wang, Yongfeng [1 ,2 ,4 ]
机构
[1] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Carbon Based Elect, Dept Elect, Beijing 100871, Peoples R China
[3] CEMES CNRS, F-31055 Toulouse, France
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-CHEMISTRY; CRYSTALS; FRACTALS; CONSTRUCTION; GROWTH; DESIGN; CHAINS;
D O I
10.1021/jacs.1c05949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fractals are found in nature and play important roles in biological functions. However, it is challenging to controllably prepare biomolecule fractals. In this study, a series of Sierpinski triangles with global organizational chirality is successfully constructed by the coassembly of L-tryptophan and 1,3-bi(4-pyridyl)benzene molecules on Ag(111). The chirality is switched when replacing L-tryptophan by D-tryptophan. The fractal structures are characterized by low-temperature scanning tunneling microscopy at the single-molecule level. Density functional theory calculations reveal that intermolecular hydrogen bonds stabilize the Sierpinski triangles.
引用
收藏
页码:14417 / 14421
页数:5
相关论文
共 50 条
  • [31] LIPSCHITZ EQUIVALENCE OF TOTALLY DISCONNECTED GENERAL SIERPINSKI TRIANGLES
    Zhu, Zhi-Yong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (02)
  • [32] Bandwidth Enhancement using Small Triangles on Sierpinski Fractal
    Singh, Monika
    Kumar, Navneet
    Diwari, Santanu
    Kala, Pradyot
    2013 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSC), 2013, : 86 - 91
  • [33] Strict self-assembly of discrete Sierpinski triangles
    Lathrop, James I.
    Lutz, Jack H.
    Summers, Scott M.
    COMPUTATION AND LOGIC IN THE REAL WORLD, PROCEEDINGS, 2007, 4497 : 455 - +
  • [34] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [35] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [36] Algorithmic self-assembly of DNA Sierpinski triangles
    Rothemund, PWK
    Papadakis, N
    Winfree, E
    PLOS BIOLOGY, 2004, 2 (12) : 2041 - 2053
  • [37] Optical properties of two dimensional fractal shaped nanostructures: Comparison of Sierpinski triangles and Sierpinski carpets
    Kenari, Abdolreza Rasouli
    Solaimani, M.
    OPTICS COMMUNICATIONS, 2020, 474
  • [38] Concentration-modulated global organizational chirality at the liquid/solid interface
    Li, Shu-Ying
    Chen, Ting
    Chen, Qi
    Wang, Dong
    Zhu, Guangshan
    CHEMICAL SCIENCE, 2023, 14 (10) : 2646 - 2651
  • [39] RANDOM PACKING BY MATROID BASES AND TRIANGLES
    AKKARI, S
    DISCRETE MATHEMATICS, 1995, 145 (1-3) : 1 - 9
  • [40] Packing and Covering Triangles in Tripartite Graphs
    P. E. Haxell
    Y. Kohayakawa
    Graphs and Combinatorics, 1998, 14 : 1 - 10