Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models

被引:77
|
作者
Roosa, Kimberlyn [1 ]
Chowell, Gerardo [1 ,2 ]
机构
[1] Georgia State Univ, Dept Populat Hlth Sci, Sch Publ Hlth, Atlanta, GA 30303 USA
[2] NIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USA
基金
英国生物技术与生命科学研究理事会;
关键词
Compartmental models; Parameter identifiability; Uncertainty quantification; Epidemic models; Structural parameter identifiability; Practical parameter identifiability; EPIDEMIC; INFERENCE; INFLUENZA; NUMBER;
D O I
10.1186/s12976-018-0097-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundMathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models.MethodsWe describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika.ResultsOverall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R-0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R-0 can still be estimated with precision and accuracy.ConclusionsBecause public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Structural identifiability of compartmental models for infectious disease transmission is influenced by data type
    Dankwa, Emmanuelle A.
    Brouwer, Andrew F.
    Donnelly, Christl A.
    EPIDEMICS, 2022, 41
  • [2] On the Identifiability of Transmission Dynamic Models for Infectious Diseases
    Lintusaari, Jarno
    Gutmann, Michael U.
    Kaski, Samuel
    Corander, Jukka
    GENETICS, 2016, 202 (03) : 911 - +
  • [3] Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning
    Ponciano, Jose Miguel
    Burleigh, J. Gordon
    Braun, Edward L.
    Taper, Mark L.
    SYSTEMATIC BIOLOGY, 2012, 61 (06) : 955 - 972
  • [4] Robust global identifiability theory using potentials-Application to compartmental models
    Wongvanich, N.
    Hann, C. E.
    Sirisena, H. R.
    MATHEMATICAL BIOSCIENCES, 2015, 262 : 182 - 197
  • [5] Compartmental analysis of dynamic nuclear medicine data: models and identifiability
    Delbary, Fabrice
    Garbarino, Sara
    Vivaldi, Valentina
    INVERSE PROBLEMS, 2016, 32 (12)
  • [6] COMPARTMENTAL DISEASE TRANSMISSION MODELS FOR SMALLPOX
    Adivar, Burcu
    Selen, Ebru Selin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 13 - 21
  • [7] An algebraic computational approach to the identifiability of Fourier models
    Caboara, M
    Riccomagno, E
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 26 (02) : 245 - 260
  • [8] Bayesian workflow for time-varying transmission in stratified compartmental infectious disease transmission models
    Bouman, Judith A.
    Hauser, Anthony
    Grimm, Simon L.
    Wohlfender, Martin
    Bhatt, Samir
    Semenova, Elizaveta
    Gelman, Andrew
    Althaus, Christian L.
    Riou, Julien
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [9] Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models
    Hulin Wu
    Haihong Zhu
    Hongyu Miao
    Alan S. Perelson
    Bulletin of Mathematical Biology, 2008, 70 : 785 - 799
  • [10] Parameter identifiability and estimation of HIV/AIDS dynamic models
    Wu, Hulin
    Zhu, Haihong
    Miao, Hongyu
    Perelson, Alan S.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (03) : 785 - 799