Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models

被引:77
|
作者
Roosa, Kimberlyn [1 ]
Chowell, Gerardo [1 ,2 ]
机构
[1] Georgia State Univ, Dept Populat Hlth Sci, Sch Publ Hlth, Atlanta, GA 30303 USA
[2] NIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USA
基金
英国生物技术与生命科学研究理事会;
关键词
Compartmental models; Parameter identifiability; Uncertainty quantification; Epidemic models; Structural parameter identifiability; Practical parameter identifiability; EPIDEMIC; INFERENCE; INFLUENZA; NUMBER;
D O I
10.1186/s12976-018-0097-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundMathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models.MethodsWe describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika.ResultsOverall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R-0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R-0 can still be estimated with precision and accuracy.ConclusionsBecause public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Parameter identification of dynamic models using a bayes approach
    Shu L.
    Jiashou Z.
    Qingwen R.
    Applied Mathematics and Mechanics, 2000, 21 (4) : 447 - 454
  • [22] PARAMETER IDENTIFICATION OF DYNAMIC MODELS USING A BAYES APPROACH
    李书
    卓家寿
    任青文
    Applied Mathematics and Mechanics(English Edition), 2000, (04) : 447 - 454
  • [23] PARAMETER IDENTIFIABILITY OF HYDROLOGICAL MODELS WITH IMPLICIT STRUCTURE - A NUMERICAL APPROACH
    XIA, J
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1989, 34 (01): : 1 - 19
  • [24] Quantifying Parameter and Structural Uncertainty of Dynamic Disease Transmission Models Using MCMC: An Application to Rotavirus Vaccination in England and Wales
    Bilcke, Joke
    Chapman, Ruth
    Atchison, Christina
    Cromer, Deborah
    Johnson, Helen
    Willem, Lander
    Cox, Martin
    Edmunds, William John
    Jit, Mark
    MEDICAL DECISION MAKING, 2015, 35 (05) : 633 - 647
  • [25] Parameter Estimation for Linear Compartmental Models—A Sensitivity Analysis Approach
    Barbara Juillet
    Cécile Bos
    Claire Gaudichon
    Daniel Tomé
    Hélène Fouillet
    Annals of Biomedical Engineering, 2009, 37 : 1028 - 1042
  • [26] Sensitivity Matrix Based Parameter Identifiability Analysis for Generator Dynamic Models
    Wang, Lei
    Qi, Junjian
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [27] Postulating Compartmental Models Using a Flexible Approach
    Lainez-Aguirre, Jose M.
    Blau, Gary E.
    Reklaitis, Gintaras V.
    24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 : 1171 - 1176
  • [28] Incorporating human dynamic populations in models of infectious disease transmission: a systematic review
    Signe Møgelmose
    Karel Neels
    Niel Hens
    BMC Infectious Diseases, 22
  • [29] Incorporating human dynamic populations in models of infectious disease transmission: a systematic review
    Mogelmose, Signe
    Neels, Karel
    Hens, Niel
    BMC INFECTIOUS DISEASES, 2022, 22 (01)
  • [30] Parameter Estimation for Linear Compartmental Models-A Sensitivity Analysis Approach
    Juillet, Barbara
    Bos, Cecile
    Gaudichon, Claire
    Tome, Daniel
    Fouillet, Helene
    ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (05) : 1028 - 1042