An algebraic computational approach to the identifiability of Fourier models

被引:4
|
作者
Caboara, M [1 ]
Riccomagno, E
机构
[1] Univ Pisa, Dipartimento Matemat, I-56100 Pisa, Italy
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jsco.1998.0209
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computer algebra and in particular Grobner bases are powerful tools in experimental design (Pistone and Wynn, 1996, Biometrika 83, 653-666). This paper applies this algebraic methodology to the identifiability of Fourier models. The choice of the class of trigonometric models forces one to deal with complex entities and algebraic irrational numbers. By means of standard techniques we have implemented a version of the Buchberger algorithm that computes Grobner bases over the complex rational numbers and other simple algebraic extensions of the rational numbers. Some examples are fully carried out. (C) 1998 Academic Press.
引用
下载
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [1] An Algebraic Approach to Identifiability
    Gerbet, Daniel
    Robenack, Klaus
    ALGORITHMS, 2021, 14 (09)
  • [2] Nonlinear identifiability : An algebraic approach
    El Asmi, S
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 1045 - 1047
  • [3] Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models
    Roosa, Kimberlyn
    Chowell, Gerardo
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2019, 16
  • [4] Computational Algebraic Geometry of Epidemic Models
    Rodriguez Vega, Martin
    SENSING TECHNOLOGIES FOR GLOBAL HEALTH, MILITARY MEDICINE, AND ENVIRONMENTAL MONITORING IV, 2014, 9112
  • [5] Algebraic Identifiability of Gaussian Mixtures
    Amendola, Carlos
    Ranestad, Kristian
    Sturmfels, Bernd
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (21) : 6556 - 6580
  • [6] Identifiability and numerical algebraic geometry
    Bates, Daniel J.
    Hauenstein, Jonathan D.
    Meshkat, Nicolette
    PLOS ONE, 2019, 14 (12):
  • [7] Identifiability of ordinary or delayed nonlinear models:: a distribution approach
    Denis-Vidal, Lilianne
    Joly-Blanchard, Ghislaine
    Verdiere, Nathalie
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4, 2006, : 1626 - +
  • [8] An Approach for Identifiability of Population Pharmacokinetic-Pharmacodynamic Models
    Shivva, V.
    Korell, J.
    Tucker, I. G.
    Duffull, S. B.
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2013, 2 (06):
  • [9] Identifiability of non-linear differential algebraic systems via a linearization approach
    Ben-Zvi, A.
    McLellan, P. James
    McAuley, K. B.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2006, 84 (05): : 590 - 596
  • [10] A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models
    Brouwer, Andrew F.
    Meza, Rafael
    Eisenberg, Marisa C.
    RISK ANALYSIS, 2017, 37 (07) : 1375 - 1387