An algebraic computational approach to the identifiability of Fourier models

被引:4
|
作者
Caboara, M [1 ]
Riccomagno, E
机构
[1] Univ Pisa, Dipartimento Matemat, I-56100 Pisa, Italy
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jsco.1998.0209
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computer algebra and in particular Grobner bases are powerful tools in experimental design (Pistone and Wynn, 1996, Biometrika 83, 653-666). This paper applies this algebraic methodology to the identifiability of Fourier models. The choice of the class of trigonometric models forces one to deal with complex entities and algebraic irrational numbers. By means of standard techniques we have implemented a version of the Buchberger algorithm that computes Grobner bases over the complex rational numbers and other simple algebraic extensions of the rational numbers. Some examples are fully carried out. (C) 1998 Academic Press.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [41] Algebraic operator approach to gas kinetic models
    Ilichov, LV
    PHYSICA A, 1997, 237 (1-2): : 285 - 296
  • [42] A new algebraic approach to genome rearrangement models
    Terauds, Venta
    Sumner, Jeremy
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 84 (06)
  • [43] Approach to the construction of algebraic models of algorithms and programs
    Surzhko, SV
    Yushchenko, EL
    CYBERNETICS AND SYSTEMS ANALYSIS, 1996, 32 (01) : 1 - 8
  • [44] Network Tomography: Identifiability and Fourier Domain Estimation
    Chen, Aiyou
    Cao, Jin
    Bu, Tian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (12) : 6029 - 6039
  • [45] Network tomography:Identifiability and Fourier domain estimation
    Chen, Aiyou
    Cao, Jin
    Bu, Tian
    INFOCOM 2007, VOLS 1-5, 2007, : 1875 - +
  • [46] A computational approach to identifiability analysis for a model of the propagation and control of COVID-19 in Chile
    Burger, Raimund
    Chowell, Gerardo
    Kroeker, Ilja
    Lara-Diaz, Leidy Yissedt
    JOURNAL OF BIOLOGICAL DYNAMICS, 2023, 17 (01)
  • [47] Cryptomorphic topological structures: A computational, relation-algebraic approach
    Berghammer, Rudolf
    Schmidt, Gunther
    Winter, Michael
    JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING, 2019, 102 : 17 - 45
  • [48] Structural identifiability analysis of the Anaerobic Digestion Model No. 1 using a local algebraic observability approach
    Lauwers, Joost
    Nimmegeers, Philippe
    Logist, Filip
    Van Impe, Jan
    IFAC PAPERSONLINE, 2015, 48 (01): : 470 - 475
  • [49] A Computational Framework for Identifiability and III-Conditioning Analysis of Lithium-Ion Battery Models
    Lopez, Diana C. C.
    Wozny, Guenter
    Flores-Tlacuahuac, Antonio
    Vasquez-Medrano, Ruben
    Zavala, Victor M.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (11) : 3026 - 3042
  • [50] On structural identifiability of dynamic models
    Hyötyniemi, H
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 257 - 262