Geometric spanner of objects under L1 distance

被引:0
|
作者
Zhu, Yongding [1 ]
Xu, Jinhui [1 ]
Yang, Yang [1 ]
Katoh, Naoki [2 ]
Tanigawa, Shin-ichi [2 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
[2] Kyoto Univ, Dept Architecture & Architectural Syst, Kyoto, Japan
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Geometric spanner is a fundamental structure in computational geometry and plays an important role in many geometric networks design applications. In this paper, we consider the following generalized geometric spanner problem under L, distance: Given a set of disjoint objects S, find a spanning network G with minimum size so that for any pair of points in different objects of S, there exists a path in G with length no more than t times their L, distance, where t is the stretch factor. Specifically, we focus on three types of objects: rectilinear segments, axis aligned rectangles, and rectilinear monotone polygons. By combining ideas of t-weekly dominating set, walls, aligned pairs and interval cover, we develop a 4-approximation algorithm (measured by the number of Steiner points) for each type of objects. Our algorithms run in near quadratic time, and can be easily implemented for practical applications.
引用
下载
收藏
页码:395 / +
页数:2
相关论文
共 50 条
  • [11] On the development of null implicit objects in L1 English
    Perez-Leroux, Ana T.
    Pirvulescu, Mihaela
    Roberge, Yves
    Castilla, Anny
    CANADIAN JOURNAL OF LINGUISTICS-REVUE CANADIENNE DE LINGUISTIQUE, 2013, 58 (03): : 443 - +
  • [12] Remarks on the L1 distance in statistical data analysis
    Budzynski, Robert J.
    Kondracki, Witold
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (19) : 9355 - 9363
  • [13] Bregman Distance to L1 Regularized Logistic Regression
    Das Gupta, Mithun
    Huang, Thomas S.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2577 - 2580
  • [14] Bounding the L1 Distance in Nonparametric Density Estimation
    Subrata Kundu
    Adam T. Martinsek
    Annals of the Institute of Statistical Mathematics, 1997, 49 : 57 - 78
  • [15] L1 Adaptive Augmentation for Geometric Tracking Control of Quadrotors
    Wu, Zhuohuan
    Cheng, Sheng
    Ackerman, Kasey A.
    Gahlawat, Aditya
    Lakshmanan, Arun
    Zhao, Pan
    Hovakimyan, Naira
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [16] CONSTRAINED L1 ESTIMATION VIA GEOMETRIC-PROGRAMMING
    DINKEL, JJ
    PFAFFENBERGER, RC
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1981, 7 (03) : 299 - 305
  • [17] IsometricandAlmostIsometricOperatorsofB(L1→L1)
    定光桂
    ActaMathematicaSinica, 1985, (02) : 126 - 140
  • [18] Some geometric aspects of operators acting from L1
    Mykhaylyuk, Volodymyr V.
    Popov, Mykhaylo M.
    POSITIVITY, 2006, 10 (03) : 431 - 466
  • [19] Univariate cubic L1 splines -: A geometric programming approach
    Cheng, H
    Fang, SC
    Lavery, JE
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2002, 56 (02) : 197 - 229
  • [20] A geometric programming approach for bivariate cubic L1 splines
    Wang, Y
    Fang, SC
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (04) : 481 - 514