A geometric programming approach for bivariate cubic L1 splines

被引:8
|
作者
Wang, Y [1 ]
Fang, SC
机构
[1] N Carolina State Univ, Raleigh, NC 27695 USA
[2] USA, Res Off, Army Res Lab, Res Triangle Pk, NC 27709 USA
[3] SAS Inst Inc, Cary, NC 27513 USA
[4] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[5] Tsing Hua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
关键词
Cubic L-1 spline; geometric programming; interpolation; spline function; bivariate;
D O I
10.1016/j.camwa.2004.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bivariate cubic L-1 splines provide C-1-smooth, shape-preserving interpolation of arbitrary data, including data with abrupt changes in spacing and magnitude. The minimization principle for bivariate cubic L-1 splines results in a nondifferentiable convex optimization problem. This problem is reformulated as a generalized geometric programming problem. A geometric dual with a linear objective function and convex cubic constraints is derived. A linear system for dual-to-primal conversion is established. The results of computational experiments are presented. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:481 / 514
页数:34
相关论文
共 50 条
  • [1] Univariate cubic L1 splines -: A geometric programming approach
    Cheng, H
    Fang, SC
    Lavery, JE
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2002, 56 (02) : 197 - 229
  • [2] Univariate cubic L1 splines – A geometric programming approach
    Hao Cheng
    Shu-Cherng Fang
    John E. Lavery
    [J]. Mathematical Methods of Operations Research, 2002, 56 : 197 - 229
  • [3] A geometric programming framework for univariate cubic L1 smoothing splines
    Cheng, H
    Fang, SC
    Lavery, JE
    [J]. ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) : 229 - 248
  • [4] A Geometric Programming Framework for Univariate Cubic L1 Smoothing Splines
    Hao Cheng
    Shu-Cherng Fang
    John E. Lavery
    [J]. Annals of Operations Research, 2005, 133 : 229 - 248
  • [5] A compressed primal-dual method for generating bivariate.: cubic L1 splines
    Wang, Yong
    Fang, Shu-Cherng
    Lavery, John E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 201 (01) : 69 - 87
  • [6] Geometric dual formulation for first-derivative-based univariate cubic L1 splines
    Zhao, Y. B.
    Fang, S. -C.
    Lavery, J. E.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 589 - 621
  • [7] Geometric dual formulation for first-derivative-based univariate cubic L1 splines
    Y. B. Zhao
    S.-C. Fang
    J. E. Lavery
    [J]. Journal of Global Optimization, 2008, 40 : 589 - 621
  • [8] An efficient algorithm for generating univariate cubic L1 splines
    Cheng, H
    Fang, SC
    Lavery, JE
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 29 (02) : 219 - 253
  • [9] An Efficient Algorithm for Generating Univariate Cubic L1 Splines
    Hao Cheng
    Shu-Cherng Fang
    John E. Lavery
    [J]. Computational Optimization and Applications, 2004, 29 : 219 - 253
  • [10] Univariate cubic Lp splines and shape-preserving, multiscale interpolation by univariate cubic L1 splines
    Lavery, JE
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (04) : 319 - 336