Holographic calculations of Renyi entropy

被引:167
|
作者
Hung, Ling-Yan [1 ]
Myers, Robert C. [1 ]
Smolkin, Michael [1 ]
Yale, Alexandre [1 ,2 ,3 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Guelph Waterloo Phys Inst, Waterloo, ON N2L 3G1, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Black Holes in String Theory; AdS-CFT Correspondence; Holography and condensed matter physics (AdS/CMT); HIGHER-DERIVATIVE GRAVITY; BLACK-HOLE; ENTANGLEMENT ENTROPY; ASYMPTOTICALLY ADS; THERMODYNAMICS;
D O I
10.1007/JHEP12(2011)047
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We extend the approach of [12] to a new calculation of the Renyi entropy of a general CFT in d dimensions with a spherical entangling surface, in terms of certain thermal partition functions. We apply this approach to calculate the Renyi entropy in various holographic models. Our results indicate that in general, the Renyi entropy will be a complicated nonlinear function of the central charges and other parameters which characterize the CFT. We also exhibit the relation between this new thermal calculation and a conventional calculation of the Renyi entropy where a twist operator is inserted on the spherical entangling surface. The latter insight also allows us to calculate the scaling dimension of the twist operators in the holographic models.
引用
收藏
页数:61
相关论文
共 50 条
  • [31] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [32] Supersymmetric Renyi entropy
    Nishioka, Tatsuma
    Yaakov, Itamar
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [33] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    [J]. PHYSICAL REVIEW A, 2016, 93 (02)
  • [34] RENYI ENTROPY AND RECURRENCE
    Ko, Milton
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2403 - 2421
  • [35] On Homophony and Renyi Entropy
    Pimentel, Tiago
    Meister, Clara
    Teufel, Simone
    Cotterell, Ryan
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8284 - 8293
  • [36] On the Conditional Renyi Entropy
    Fehr, Serge
    Berens, Stefan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 6801 - 6810
  • [37] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [38] On Renyi Permutation Entropy
    Gutjahr, Tim
    Keller, Karsten
    [J]. ENTROPY, 2022, 24 (01)
  • [39] Portfolio Selection in the Credibilistic Framework Using Renyi Entropy and Renyi Cross Entropy
    Yari, Gholanhossein
    Sajedi, Alireza
    Rahimi, Mohamadtaghi
    [J]. INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2018, 18 (01) : 78 - 83
  • [40] Conditional Renyi Entropy and the Relationships between Renyi Capacities
    Aishwarya, Gautam
    Madiman, Mokshay
    [J]. ENTROPY, 2020, 22 (05)