Some characterizations and properties of COM-Poisson random variables

被引:10
|
作者
Li, Bo [1 ]
Zhang, Huiming [2 ,3 ]
He, Jiao [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Conway-Maxwell-Poisson distribution; conditional distribution; recurrence formula; Fisher information for discrete distribution; Stam inequality; closed under addition; BINOMIAL-DISTRIBUTION; OVERDISPERSION; DISTRIBUTIONS;
D O I
10.1080/03610926.2018.1563164
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Starting with a literature review for theoretical properties of COM-Poisson distributions, this paper proposes some new characterizations of COM-Poisson random variables. First, we extend the Moran-Chatterji characterization and generalize the Rao-Rubin characterization of Poisson distribution to COM-Poisson distribution. Then, we define the COM-type discrete r.v. of the discrete random variable X. The probability mass function of has a link to the Renyi entropy and Tsallis entropy of order nu of X. And then we can get the characterization of Stam inequality for COM-type discrete version Fisher information. By using the recurrence formula, the property that COM-Poisson random variables () is not closed under addition is obtained. Finally, under the property of "not closed under addition" of COM-Poisson random variables, a new characterization of Poisson distribution is found.
引用
下载
收藏
页码:1311 / 1329
页数:19
相关论文
共 50 条
  • [21] A control chart for COM-Poisson distribution using a modified EWMA statistic
    Aslam, Muhammad
    Saghir, Aamir
    Ahmad, Liaquat
    Jun, Chi-Hyuck
    Hussain, Jaffer
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (18) : 3491 - 3502
  • [22] Reparametrization of COM-Poisson regression models with applications in the analysis of experimental data
    Ribeiro, Eduardo E., Jr.
    Zeviani, Walmes M.
    Bonat, Wagner H.
    Demetrio, Clarice G. B.
    Hinde, John
    STATISTICAL MODELLING, 2020, 20 (05) : 443 - 466
  • [23] An EM algorithm for the destructive COM-Poisson regression cure rate model
    Suvra Pal
    Jacob Majakwara
    N. Balakrishnan
    Metrika, 2018, 81 : 143 - 171
  • [24] An EM algorithm for the destructive COM-Poisson regression cure rate model
    Pal, Suvra
    Majakwara, Jacob
    Balakrishnan, N.
    METRIKA, 2018, 81 (02) : 143 - 171
  • [25] Re-parameterization of the COM-Poisson Distribution Using Spectral Algorithms
    Adeniyi, Isaac Adeola
    Shobanke, Dolapo Abidemi
    Edogbanya, Helen Olaronke
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2019, 15 (03) : 701 - 712
  • [26] A data disclosure policy for count data based on the COM-Poisson distribution
    Kadane, Joseph B.
    Krishnan, Ramayya
    Shmueli, Galit
    MANAGEMENT SCIENCE, 2006, 52 (10) : 1610 - 1617
  • [27] On Some Models of Ordered Random Variables and Characterizations of Distributions
    Mahdi Tavangar
    Ismihan Bayramoglu
    Mathematical Methods of Statistics, 2020, 29 : 149 - 158
  • [28] On Some Models of Ordered Random Variables and Characterizations of Distributions
    Tavangar, Mahdi
    Bayramoglu, Ismihan
    MATHEMATICAL METHODS OF STATISTICS, 2020, 29 (03) : 149 - 158
  • [29] Estimation Methods for a Flexible INAR(1) COM-Poisson Time Series Model
    Sunecher, Y.
    Khan, N. Mamode
    Jowaheer, V.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2018, 14 (01) : 57 - 82
  • [30] Analyzing the factors effecting the passenger car breakdowns using com-poisson GLM
    Khan, N Mamode
    Jowaheer, V.
    World Academy of Science, Engineering and Technology, 2010, 37 : 446 - 448