Re-parameterization of the COM-Poisson Distribution Using Spectral Algorithms

被引:0
|
作者
Adeniyi, Isaac Adeola [1 ]
Shobanke, Dolapo Abidemi [1 ]
Edogbanya, Helen Olaronke [1 ]
机构
[1] Fed Univ Lokoja, Dept Math Sci, Lokoja, Nigeria
关键词
Count Data; Dispersion Parameter; Overdispersion; Spectral Algorithm; Underdispersion; NONLINEAR-SYSTEMS; REGRESSION-MODEL;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson regression is popularly used to model count data but real life data often do not satisfy the essential assumption of equality of the mean and variance of the Poisson distribution. The Conway-Maxwell-Poisson (COM-Poisson) distributions is one of the models that have been proposed for handling cases of over-and under-dispersion. Nevertheless, the parameterization of the COM-Poisson distribution still remains a major challenge in practice as the location parameter of the original COM-Poisson distribution rarely represents the mean of the distribution. As a result, this paper proposes a new parameterization of the COM-Poisson distribution via the central location (mean) so that more easily-interpretable models and results can be obtained. The nonlinear equations resulting from the re-parameterization were solved using the efficient and fast derivative free spectral algorithm. The proposed parameterization is used to present useful numerical results concerning the mean of the COM-Poisson distribution and the location parameter in the original COM-Poisson parameterization. Application of the re-parameterization is further illustrated by fitting COM-Poisson probability models to real life datasets.
引用
收藏
页码:701 / 712
页数:12
相关论文
共 27 条
  • [1] The exponential COM-Poisson distribution
    Cordeiro, Gauss M.
    Rodrigues, Josemar
    de Castro, Mario
    [J]. STATISTICAL PAPERS, 2012, 53 (03) : 653 - 664
  • [2] The exponential COM-Poisson distribution
    Gauss M. Cordeiro
    Josemar Rodrigues
    Mário de Castro
    [J]. Statistical Papers, 2012, 53 : 653 - 664
  • [3] A control chart for COM-Poisson distribution using a modified EWMA statistic
    Aslam, Muhammad
    Saghir, Aamir
    Ahmad, Liaquat
    Jun, Chi-Hyuck
    Hussain, Jaffer
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (18) : 3491 - 3502
  • [4] A progressive mean control chart for COM-Poisson distribution
    Alevizakos, Vasileios
    Koukouvinos, Christos
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) : 849 - 867
  • [5] Useful moment and CDF formulations for the COM-Poisson distribution
    Nadarajah, Saralees
    [J]. STATISTICAL PAPERS, 2009, 50 (03) : 617 - 622
  • [6] A MCMC approach for modeling customer lifetime behavior using the COM-Poisson distribution
    Ben Mzoughia, Mohamed
    Borle, Sharad
    Limam, Mohamed
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2018, 34 (02) : 113 - 127
  • [7] A Control Chart for COM-Poisson Distribution Using Multiple Dependent State Sampling
    Aslam, Muhammad
    Ahmad, Liaquat
    Jun, Chi-Hyuck
    Arif, Osama H.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (08) : 2803 - 2812
  • [8] Mixed EWMA-CUSUM chart for COM-Poisson distribution
    Rao, Gadde Srinivasa
    Aslam, Muhammad
    Rasheed, Umer
    Jun, Chi-Hyuck
    [J]. JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2019,
  • [9] A Control Chart for COM-Poisson Distribution Using Resampling and Exponentially Weighted Moving Average
    Aslam, Muhammad
    Azam, Muhammad
    Jun, Chi-Hyuck
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 727 - 735
  • [10] A COM-Poisson type generalization of the binomial distribution and its properties and applications
    Borges, Patrick
    Rodrigues, Josemar
    Balakrishnan, Narayanaswamy
    Bazan, Jorge
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 87 : 158 - 166