Global wellposedness for a one-dimensional Chern-Simons-Dirac system in L

被引:1
|
作者
Machihara, Shuji [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Saitama Univ, Sch Math, Fac Educ, Saitama 3388570, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi, Japan
基金
日本学术振兴会;
关键词
Chern-Simons-Dirac equation; global wellposedness; mass concentration phenomena; ONE SPACE DIMENSION; WELL-POSEDNESS; CAUCHY-PROBLEM; QUADRATIC NONLINEARITIES; GAUGE-THEORIES; ILL-POSEDNESS; EQUATIONS;
D O I
10.1080/03605302.2017.1330339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global wellposedness in L-P (R) for the Chern-Simons-Dirac equation in the 1 + 1 space and time dimension is discussed. We consider two types of quadratic nonlinearity: the null case and the non-null case. We show the time global wellposedness for the Chern-Simon-Dirac equation in the framework of L-p(R), where 1 <= p <= infinity for the null case. For the scaling critical case, p = 1, mass concentration phenomena of the solutions may occur in considering the time global solvability. We invoke the Delgado-Candy estimate which plays a crucial role in preventing concentration phenomena of the global solution. Our method is related to the original work of Candy (2011), who showed the time global wellposedness for the single Dirac equation with cubic nonlinearity in the critical space L-2(R).
引用
收藏
页码:1175 / 1198
页数:24
相关论文
共 50 条
  • [41] Localization for One-Dimensional Anderson–Dirac Models
    Sylvain Zalczer
    Annales Henri Poincaré, 2023, 24 : 37 - 72
  • [42] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Daniel M. Elton
    Michael Levitin
    Iosif Polterovich
    Annales Henri Poincaré, 2014, 15 : 2321 - 2377
  • [43] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [44] Essential Spectra of One-Dimensional Dirac Operators
    Qi, Jiangang
    Chen, Shaozhu
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (01) : 7 - 24
  • [45] Bernoulli scheme and one-dimensional Dirac equation
    Arkhipov, V. V.
    Kolt, M. V.
    Kudusov, A. S.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2011, 2 (62): : 3 - 8
  • [46] Essential Spectra of One-Dimensional Dirac Operators
    Jiangang Qi
    Shaozhu Chen
    Integral Equations and Operator Theory, 2012, 74 : 7 - 24
  • [47] Path integral for one-dimensional Dirac oscillator
    R. Rekioua
    T. Boudjedaa
    The European Physical Journal C, 2007, 49 : 1091 - 1098
  • [48] The Dirac particle in a one-dimensional "hydrogen atom"
    Sveshnikov, K. A.
    Khomovskii, D. I.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2012, 67 (04) : 358 - 363
  • [49] Path integral for one-dimensional Dirac oscillator
    Rekioua, R.
    Boudjedaa, T.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 49 (04): : 1091 - 1098
  • [50] Solution of the Dirac equation in a one-dimensional box
    Alhaidari, A. D.
    El Aaoud, E.
    PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5), 2011, 1370