Global wellposedness for a one-dimensional Chern-Simons-Dirac system in L

被引:1
|
作者
Machihara, Shuji [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Saitama Univ, Sch Math, Fac Educ, Saitama 3388570, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi, Japan
基金
日本学术振兴会;
关键词
Chern-Simons-Dirac equation; global wellposedness; mass concentration phenomena; ONE SPACE DIMENSION; WELL-POSEDNESS; CAUCHY-PROBLEM; QUADRATIC NONLINEARITIES; GAUGE-THEORIES; ILL-POSEDNESS; EQUATIONS;
D O I
10.1080/03605302.2017.1330339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global wellposedness in L-P (R) for the Chern-Simons-Dirac equation in the 1 + 1 space and time dimension is discussed. We consider two types of quadratic nonlinearity: the null case and the non-null case. We show the time global wellposedness for the Chern-Simon-Dirac equation in the framework of L-p(R), where 1 <= p <= infinity for the null case. For the scaling critical case, p = 1, mass concentration phenomena of the solutions may occur in considering the time global solvability. We invoke the Delgado-Candy estimate which plays a crucial role in preventing concentration phenomena of the global solution. Our method is related to the original work of Candy (2011), who showed the time global wellposedness for the single Dirac equation with cubic nonlinearity in the critical space L-2(R).
引用
收藏
页码:1175 / 1198
页数:24
相关论文
共 50 条
  • [31] Well-posedness for the dimension-reduced Chern–Simons–Dirac system
    Shuji Machihara
    Mamoru Okamoto
    Journal of Evolution Equations, 2017, 17 : 1031 - 1048
  • [32] Discretizing the one-dimensional Dirac equation
    Wessels, PPF
    Caspers, WJ
    Wiegel, FW
    EUROPHYSICS LETTERS, 1999, 46 (02): : 123 - 126
  • [33] GEOMETRIC-QUANTIZATION, CHERN-SIMONS QUANTUM-MECHANICS AND ONE-DIMENSIONAL SIGMA-MODELS
    PAPADOPOULOS, G
    CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (07) : 1311 - 1326
  • [34] Local and global solutions of the Chern-Simons-Higgs system
    Huh, Hyungjin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) : 526 - 549
  • [35] Nonexistence of global solution to Chern-Simons-Higgs system
    Yuan, Jianjun
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [36] Unilateral Global Bifurcation from Infinity in Nonlinearizable One-Dimensional Dirac Problems
    Aliyev, Ziyatkhan S.
    Neymatov, Nazim A.
    Rzayeva, Humay Sh.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (01):
  • [37] Collisionless intraband absorption in a system of one-dimensional massless Dirac electrons
    Chaplik, A. V.
    JETP LETTERS, 2014, 99 (06) : 346 - 348
  • [38] A CANONICAL MODEL OF THE ONE-DIMENSIONAL DYNAMICAL DIRAC SYSTEM WITH BOUNDARY CONTROL
    Belishev, Mikhail I.
    Simonov, Sergey A.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01): : 283 - 300
  • [39] Collisionless intraband absorption in a system of one-dimensional massless Dirac electrons
    A. V. Chaplik
    JETP Letters, 2014, 99 : 346 - 348
  • [40] Vacuum energy of one-dimensional supercritical Dirac-Coulomb system
    Davydov, A.
    Sveshnikov, K.
    Voronina, Yu.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (11):