Finding tendencies in streaming data using Big Data frequent itemset mining

被引:38
|
作者
Fernandez-Basso, Carlos [1 ,2 ]
Francisco-Agra, Abel J. [1 ,2 ]
Martin-Bautista, Maria J. [1 ,2 ]
Dolores Ruiz, M. [3 ]
机构
[1] Univ Granada, Dept Comp Sci & AI, Granada, Spain
[2] Univ Granada, CITIC UGR, Granada, Spain
[3] Univ Cadiz, Comp Engn Dept, Cadiz, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Streaming data; Big Data; Frequent itemset mining; Tendencies; SLIDING WINDOW; PATTERNS;
D O I
10.1016/j.knosys.2018.09.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The amount of information generated in social media channels or economical/business transactions exceeds the usual bounds of static databases and is in continuous growing. In this work, we propose a frequent itemset mining method using sliding windows capable of extracting tendencies from continuous data flows. For that aim, we develop this method using Big Data technologies, in particular, using the Spark Streaming framework enabling distributing the computation along several clusters and thus improving the algorithm speed. The experimentation carried out shows the capability of our proposal and its scalability when massive amounts of data coming from streams are taken into account. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 674
页数:9
相关论文
共 50 条
  • [31] A Survey on Closed Frequent Itemset Mining on Data Streams
    Bai, Pavitra . S.
    Kumar, Ravi . G. . K.
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2016, : 542 - 547
  • [32] Frequent Itemset Mining in High Dimensional Data: A Review
    Zaki, Fatimah Audah Md
    Zulkurnain, Nurul Fariza
    COMPUTATIONAL SCIENCE AND TECHNOLOGY, 2019, 481 : 325 - 334
  • [33] A novel algorithm for frequent itemset mining in data warehouses
    徐利军
    谢康林
    Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, (02) : 216 - 224
  • [34] Parallel Incremental Frequent Itemset Mining for Large Data
    Yu-Geng Song
    Hui-Min Cui
    Xiao-Bing Feng
    Journal of Computer Science and Technology, 2017, 32 : 368 - 385
  • [35] Finding efficiencies in frequent pattern mining from big uncertain data
    Leung, Carson Kai-Sang
    MacKinnon, Richard Kyle
    Jiang, Fan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2017, 20 (03): : 571 - 594
  • [36] Finding efficiencies in frequent pattern mining from big uncertain data
    Carson Kai-Sang Leung
    Richard Kyle MacKinnon
    Fan Jiang
    World Wide Web, 2017, 20 : 571 - 594
  • [37] Efficient Incremental Itemset Tree for Approximate Frequent Itemset Mining On Data Stream
    Bai, Pavitra S.
    Kumar, Ravi G. K.
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 239 - 242
  • [38] HFIM: a Spark-based hybrid frequent itemset mining algorithm for big data processing
    Sethi, Krishan Kumar
    Ramesh, Dharavath
    JOURNAL OF SUPERCOMPUTING, 2017, 73 (08): : 3652 - 3668
  • [39] HFIM: a Spark-based hybrid frequent itemset mining algorithm for big data processing
    Krishan Kumar Sethi
    Dharavath Ramesh
    The Journal of Supercomputing, 2017, 73 : 3652 - 3668
  • [40] AnyFI: An Anytime Frequent Itemset Mining Algorithm for Data Streams
    Goyal, Poonam
    Challa, Jagat Sesh
    Shrivastava, Shivin
    Goyal, Navneet
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 942 - 947