Frequent Itemset Mining in High Dimensional Data: A Review

被引:0
|
作者
Zaki, Fatimah Audah Md [1 ]
Zulkurnain, Nurul Fariza [1 ]
机构
[1] Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Kuala Lumpur, Malaysia
来源
关键词
Data mining; High-dimensional data; EFFICIENT ALGORITHM; DISCOVERY; PATTERNS;
D O I
10.1007/978-981-13-2622-6_32
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper provides a brief overview of the techniques used in frequent itemset mining. It discusses the search strategies used; i.e. depth first vs. breadth-first, and dataset representation; i.e. horizontal vs. vertical representation. In addition, it reviews many techniques used in several algorithms that make frequent itemset mining more efficient. These algorithms are discussed based on the proposed search strategies which include row-enumeration vs. column-enumeration, bottom-up vs. top-down traversal, and a number of new data structures. Finally, the paper reviews on the latest algorithms of colossal frequent itemset/pattern which currently is the most relevant to mining high-dimensional dataset.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 50 条
  • [1] A Review on Frequent Itemset Mining Algorithms in Social Network Data
    Dharsandiya, Ankit N.
    Patel, Mihir R.
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 1046 - 1048
  • [2] Frequent Itemset Mining for Big Data
    Moens, Sandy
    Aksehirli, Emin
    Goethals, Bart
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [3] Frequent Itemset Mining for Big Data
    Chavan, Kiran
    Kulkarni, Priyanka
    Ghodekar, Pooja
    Patil, S. N.
    2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, : 1365 - 1368
  • [4] Review of Apriori based Frequent Itemset Mining Solutions on Big Data
    Fard, Mohammad Javad Shayegan
    Namin, Parsa Asgari
    2020 6TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2020, : 157 - 164
  • [5] Frequent itemset mining: A 25 years review
    Maria Luna, Jose
    Fournier-Viger, Philippe
    Ventura, Sebastian
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (06)
  • [6] Parallel Frequent Itemset Mining on Streaming Data
    He, Yanshan
    Yue, Min
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 725 - 730
  • [7] A Review of Scalable Approaches for Frequent Itemset Mining
    Apiletti, Daniele
    Garza, Paolo
    Pulvirenti, Fabio
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS (ADBIS 2015), 2015, 539 : 243 - 247
  • [8] Frequent Itemset Mining Techniques - A Technical Review
    Chaure, Tushar M.
    Singh, Kavita R.
    2016 WORLD CONFERENCE ON FUTURISTIC TRENDS IN RESEARCH AND INNOVATION FOR SOCIAL WELFARE (STARTUP CONCLAVE), 2016,
  • [9] Algorithms for frequent itemset mining: a literature review
    Chee, Chin-Hoong
    Jaafar, Jafreezal
    Aziz, Izzatdin Abdul
    Hasan, Mohd Hilmi
    Yeoh, William
    ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (04) : 2603 - 2621
  • [10] Algorithms for frequent itemset mining: a literature review
    Chin-Hoong Chee
    Jafreezal Jaafar
    Izzatdin Abdul Aziz
    Mohd Hilmi Hasan
    William Yeoh
    Artificial Intelligence Review, 2019, 52 : 2603 - 2621