Intuitionistic fuzzy C-means clustering algorithms

被引:134
|
作者
Xu, Zeshui [1 ,2 ]
Wu, Junjie [3 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210096, Peoples R China
[2] PLA Univ Sci & Technol, Inst Sci, Nanjing 210007, Peoples R China
[3] Beihang Univ, Dept Informat Syst, Sch Econ & Management, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
intuitionistic fuzzy set (IFS); intuitionistic fuzzy C-means algorithm; clustering; interval-valued intuitionistic fuzzy set (IVIFS); SIMILARITY MEASURES; SETS;
D O I
10.3969/j.issn.1004-4132.2010.04.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intuitionistic fuzzy sets (IFSs) are useful means to describe and deal with vague and uncertain data. An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed. In each stage of the intuitionistic fuzzy C-means method the seeds are modified, and for each IFS a membership degree to each of the clusters is estimated. In the end of the algorithm, all the given IFSs are clustered according to the estimated membership degrees. Furthermore, the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets (IVIFSs). Finally, the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.
引用
收藏
页码:580 / 590
页数:11
相关论文
共 50 条
  • [31] Interval Type-2 Fuzzy C-means Clustering using Intuitionistic Fuzzy Sets
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    2013 THIRD WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2013, : 299 - 304
  • [32] Intuitionistic fuzzy sets based credibilistic fuzzy C-means clustering for medical image segmentation
    Kaur P.
    International Journal of Information Technology, 2017, 9 (4) : 345 - 351
  • [33] Alternative c-means clustering algorithms
    Wu, KL
    Yang, MS
    PATTERN RECOGNITION, 2002, 35 (10) : 2267 - 2278
  • [34] Fuzzy c-means for fuzzy hierarchical clustering
    Vicenc, T
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 646 - 651
  • [35] Relative Density Weights Based Fuzzy C-Means Clustering Algorithms
    Chen, Jin-hua
    Chen, Xiao-yun
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2010, VOL 2, 2010, 82 : 459 - 466
  • [36] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    Information Sciences, 2025, 690
  • [37] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [38] Contrastive Study of Distributed Multitask Fuzzy C-means Clustering and Traditional Clustering Algorithms
    Guo, Yanlin
    Zi, Yuan
    Jiang, Yizhang
    2020 5TH INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2020), 2020, : 239 - 245
  • [39] A study on multi-kernel intuitionistic fuzzy C-means clustering with multiple attributes
    Zeng, Shan
    Wang, Zhiyong
    Huang, Rui
    Chen, Ling
    Feng, David
    NEUROCOMPUTING, 2019, 335 : 59 - 71
  • [40] Noise robust intuitionistic fuzzy c-means clustering algorithm incorporating local information
    Yang, Zhenzhen
    Xu, Pengfei
    Yang, Yongpeng
    Kang, Bin
    IET IMAGE PROCESSING, 2021, 15 (03) : 805 - 817