We consider the subset sums analog of the linear Diophantine problem of Frobenius. It is shown that if A subset of or equal to [1; l] is a sufficiently dense set of n positive integers, then [2l-2n + 1; sigma - (2l - 2n + 1)] subset of or equal to A*, where sigma is the sum of all elements of A, and A* is the set of all subset sums of A. The interval above is best possible and cannot be extended. (C) 1998 Elsevier Science B.V. All rights reserved.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
Kimmel, Noam
Kuperb, Vivian
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, SwitzerlandTel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
Suzhou Univ, Dept Math, Suzhou 215006, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Chen, Feng-Juan
Chen, Yong-Gao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China