On consecutive subset sums

被引:3
|
作者
Lev, VF [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/S0012-365X(98)80006-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the subset sums analog of the linear Diophantine problem of Frobenius. It is shown that if A subset of or equal to [1; l] is a sufficiently dense set of n positive integers, then [2l-2n + 1; sigma - (2l - 2n + 1)] subset of or equal to A*, where sigma is the sum of all elements of A, and A* is the set of all subset sums of A. The interval above is best possible and cannot be extended. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [41] Some new results on subset sums
    Vu, Van H.
    JOURNAL OF NUMBER THEORY, 2007, 124 (01) : 229 - 233
  • [42] PERFECT POWERS THAT ARE SUMS OF CONSECUTIVE CUBES
    Bennett, Michael A.
    Patel, Vandita
    Siksek, Samir
    MATHEMATIKA, 2017, 63 (01) : 230 - 249
  • [43] Formulae for sums of consecutive square roots
    Xingzhi Zhan
    The Mathematical Intelligencer, 2005, 27 : 4 - 5
  • [44] Formulae for sums of consecutive square roots
    Zhan, XZ
    MATHEMATICAL INTELLIGENCER, 2005, 27 (04): : 4 - 5
  • [45] Consecutive runs of sums of two squares
    Kimmel, Noam
    Kuperb, Vivian
    JOURNAL OF NUMBER THEORY, 2024, 264 : 135 - 147
  • [46] PRIMES AND CONSECUTIVE SUMS IN ARITHMETIC PROGRESSIONS
    BESLIN, SJ
    KORTRIGHT, EV
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 49 (3-4) : 157 - 162
  • [47] Weighted sums of consecutive values of a polynomial
    Chen, Feng-Juan
    Chen, Yong-Gao
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 2725 - 2735
  • [48] Number Cubes with Consecutive Line Sums
    Dukes, Peter J.
    Niezen, Joanna
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (04): : 336 - 343
  • [49] SUMS OF INTEGRAL POWERS OF CONSECUTIVE INTEGERS
    CREUTZ, E
    NUCLEAR SCIENCE AND ENGINEERING, 1973, 52 (01) : 142 - 151
  • [50] ON SUMS OF POWERS OF N CONSECUTIVE INTEGERS
    HOLLCROFT, TR
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 526 - 526