On consecutive subset sums

被引:3
|
作者
Lev, VF [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/S0012-365X(98)80006-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the subset sums analog of the linear Diophantine problem of Frobenius. It is shown that if A subset of or equal to [1; l] is a sufficiently dense set of n positive integers, then [2l-2n + 1; sigma - (2l - 2n + 1)] subset of or equal to A*, where sigma is the sum of all elements of A, and A* is the set of all subset sums of A. The interval above is best possible and cannot be extended. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [21] Inequalities for powers of subset sums
    Popescu, C
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (06): : 562 - 563
  • [22] SUBSET SUMS IN BINARY SPACES
    ZEMOR, G
    EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (03) : 221 - 230
  • [23] ON PRIME FACTORS OF SUBSET SUMS
    ERDOS, P
    SARKOZY, A
    STEWART, CL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 209 - 218
  • [24] SUMS OF CONSECUTIVE SQUARE ROOTS
    BINZ, JC
    AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (02): : 133 - 134
  • [25] On sums of consecutive integral roots
    Saltzman, Peter W.
    Yuan, Pingzhi
    AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (03): : 254 - 261
  • [26] CUBES AS SUMS OF CONSECUTIVE SQUARES
    EHRLICH, G
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (02): : 190 - 192
  • [27] Sums of consecutive Fibonacci numbers
    Díaz-Barrero, JL
    Egozcue, JJ
    FIBONACCI QUARTERLY, 2003, 41 (04): : 381 - 381
  • [28] THE SUMS OF THE CONSECUTIVE FIBONACCI NUMBERS
    Shtefan, Dmitriy
    Dobrovolska, Irina
    FIBONACCI QUARTERLY, 2018, 56 (03): : 229 - 236
  • [29] Optimal representations by sumsets and subset sums
    Lev, VF
    JOURNAL OF NUMBER THEORY, 1997, 62 (01) : 127 - 143
  • [30] Subset sums avoiding quadratic nonresidues
    Csikvari, Peter
    ACTA ARITHMETICA, 2008, 135 (01) : 91 - 98