On consecutive subset sums

被引:3
|
作者
Lev, VF [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/S0012-365X(98)80006-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the subset sums analog of the linear Diophantine problem of Frobenius. It is shown that if A subset of or equal to [1; l] is a sufficiently dense set of n positive integers, then [2l-2n + 1; sigma - (2l - 2n + 1)] subset of or equal to A*, where sigma is the sum of all elements of A, and A* is the set of all subset sums of A. The interval above is best possible and cannot be extended. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [1] SUBSET SUMS
    ALON, N
    JOURNAL OF NUMBER THEORY, 1987, 27 (02) : 196 - 205
  • [2] Small subset sums
    Ambrus, Gergely
    Barany, Imre
    Grinberg, Victor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 499 : 66 - 78
  • [3] SUMS OF CONSECUTIVE INTEGERS AND CONSECUTIVE SQUARES
    SABHARWA.CL
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (08): : 952 - &
  • [4] SUMS OF CONSECUTIVE INTEGERS
    GUY, R
    FIBONACCI QUARTERLY, 1982, 20 (01): : 36 - 38
  • [5] On sums of consecutive integers
    Britt, MJC
    Fradin, L
    Philips, K
    Feldman, D
    Cooper, LN
    QUARTERLY OF APPLIED MATHEMATICS, 2005, 63 (04) : 791 - 792
  • [6] On consecutive sums in permutations
    Konieczny, Jakub
    JOURNAL OF COMBINATORICS, 2021, 12 (03) : 413 - 477
  • [7] On sums of consecutive squares
    Bremner, A
    Stroeker, RJ
    Tzanakis, N
    JOURNAL OF NUMBER THEORY, 1997, 62 (01) : 39 - 70
  • [8] ON CONSECUTIVE SUMS IN SEQUENCES
    HEGYVARI, N
    ACTA MATHEMATICA HUNGARICA, 1986, 48 (1-2) : 193 - 200
  • [9] The inverse problem on subset sums
    Chen, Yong-Gao
    Wu, Jian-Dong
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (05) : 841 - 845
  • [10] Subset sums and coding theory
    Cohen, G
    Zémor, G
    ASTERISQUE, 1999, (258) : 327 - 339