STUDY OF A LOGISTIC EQUATION WITH LOCAL AND NON-LOCAL REACTION TERMS

被引:5
|
作者
Delgado, Manuel [1 ]
Figueiredo, Giovany M. [2 ]
Pimenta, Marcos T. O. [3 ]
Suarez, Antonio [1 ]
机构
[1] Univ Seville, Fac Matemat, Dpto Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
[2] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
[3] UNESP, Fac Ciencias & Tecnol, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Logistic equation; local and non-local terms; bifurcation methods; POSITIVE SOLUTIONS; BIFURCATION DIAGRAMS; BLOW-UP; DIFFUSION; MULTIPLICITY;
D O I
10.12775/TMNA.2016.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine a logistic equation with local and non-local reaction terms both for time dependent and steady-state problems. Mainly, we use bifurcation and monotonicity methods to prove the existence of positive solutions for the steady-state equation and sub-supersolution method for the long time behavior for the time dependent problem. The results depend strongly on the size and sign of the parameters on the local and non-local terms.
引用
收藏
页码:693 / 713
页数:21
相关论文
共 50 条
  • [21] A threshold result for a non-local parabolic equation
    Wu, YH
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1997, 20 (11) : 933 - 943
  • [22] A Non-Local Regularization of the Short Pulse Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    MINIMAX THEORY AND ITS APPLICATIONS, 2021, 6 (02): : 295 - 310
  • [23] On the wave equation with a temporal non-local term
    Medjden, Mohamed
    Tatar, Nasser-Eddinne
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 665 - 671
  • [24] Threshold result for a non-local parabolic equation
    Wu, Yong-hui
    Mathematical Methods in the Applied Sciences, 1997, 20 (01): : 933 - 943
  • [25] A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL
    邵景峰
    郭志昌
    姚文娟
    严冬
    吴勃英
    Acta Mathematica Scientia, 2022, 42 (05) : 1779 - 1808
  • [26] A Non-Local Diffusion Equation for Noise Removal
    Shao, Jingfeng
    Guo, Zhichang
    Yao, Wenjuan
    Yan, Dong
    Wu, Boying
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1779 - 1808
  • [27] Scalar field equation with non-local diffusion
    Felmer, Patricio
    Vergara, Ignacio
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (05): : 1411 - 1428
  • [28] THE PHASE EQUATION FOR NON-LOCAL SEPARABLE POTENTIALS
    KERMODE, MW
    MELHEM, Z
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1983, 9 (12) : 1497 - 1505
  • [29] On a non-local equation arising in population dynamics
    Coville, Jerome
    Dupaigne, Louis
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 727 - 755
  • [30] CONCENTRATION PHENOMEN IN SOME NON-LOCAL EQUATION
    Bonnefon, Olivier
    Coville, Jerome
    Legendre, Guillaume
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (03): : 763 - 781