On a heterochromatic number for hypercubes

被引:2
|
作者
Montellano-Ballesteros, Juan Jose [1 ]
Neumann-Lara, Victor [1 ]
Rivera-Campo, Eduardo [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
heterochromatic; neighbourhood; hypercube;
D O I
10.1016/j.disc.2007.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The neighbourhood heterochromatic number nh(c) (G) of a non-empty graph G is the smallest integer l such that for every colouring of G with exactly l colours, G contains a vertex all of whose neighbours have different colours. We prove that lim(n ->infinity) (nh(c) (Gn) - 1)/ vertical bar V (G(n))vertical bar = 1 for any connected graph G with at least two vertices. We also give upper and lower bounds for the neighbourhood heterochromatic number of the 2(n)-dimensional hypercube. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3441 / 3448
页数:8
相关论文
共 50 条
  • [1] On the achromatic number of hypercubes
    Roichman, Y
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (02) : 177 - 182
  • [2] A linear heterochromatic number of graphs
    Montellano-Ballesteros, JJ
    Neumann-Lara, V
    [J]. GRAPHS AND COMBINATORICS, 2003, 19 (04) : 533 - 536
  • [3] A Linear Heterochromatic Number of Graphs
    J.J. Montellano-Ballesteros
    V. Neumann-Lara
    [J]. Graphs and Combinatorics, 2003, 19 : 533 - 536
  • [4] The domination number of exchanged hypercubes
    Klavzar, Sandi
    Ma, Meijie
    [J]. INFORMATION PROCESSING LETTERS, 2014, 114 (04) : 159 - 162
  • [5] The line completion number of hypercubes
    Tapadia, S. A.
    Waphare, B. N.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (01) : 78 - 82
  • [6] The crossing number of folded hypercubes
    Wang, Haoli
    Yang, Yuansheng
    Zhou, Yan
    Zheng, Wenping
    Wang, Guoqing
    [J]. UTILITAS MATHEMATICA, 2015, 98 : 393 - 408
  • [7] Signed domination number of hypercubes
    ShekinahHenry, B.
    Sheela, Y. S. Irine
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [8] The packing chromatic number of hypercubes
    Torres, Pablo
    Valencia-Pabon, Mario
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 190 : 127 - 140
  • [9] A comment on "The domination number of exchanged hypercubes"
    Jha, Pranava K.
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 343 - 344
  • [10] An upper bound on the number of frequency hypercubes
    Krotov, Denis S.
    Potapov, Vladimir N.
    [J]. DISCRETE MATHEMATICS, 2024, 347 (01)