An upper bound on the number of frequency hypercubes

被引:0
|
作者
Krotov, Denis S. [1 ]
Potapov, Vladimir N. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
Frequency hypercube; Correlation-immune function; Latin hypercube; Testing set;
D O I
10.1016/j.disc.2023.113657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A frequency n-cube F-n (q; l(0), ..., l(m-1)) is an n-dimensional q-by-...-by-qarray, where q = l(0) + ... + l(m-1), filled by numbers 0, ..., m - 1 with the property that each line contains exactly l(i) cells with symbol i, i = 0, ..., m - 1 (a line consists of q cells of the array differing in one coordinate). The trivial upper bound on the number of frequency n-cubes is m((q-1)n). We improve that lower bound for n > 2, replacing q - 1 by a smaller value s, by constructing a testing set of size s(n) for frequency n-cubes (a testing set is a collection of cells of an array the values in which uniquely determine the array with given parameters). We also construct new testing sets for generalized frequency n-cubes, which are essentially correlation-immune functions in n q-valued arguments; the cardinalities of new testing sets are smaller than for testing sets known before. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A new upper bound on the queuenumber of hypercubes
    Pai, Kung-Jui
    Chang, Jou-Ming
    Wang, Yue-Li
    [J]. DISCRETE MATHEMATICS, 2010, 310 (04) : 935 - 939
  • [2] ON THE NUMBER OF FREQUENCY HYPERCUBES Fn(4;2,2)
    Shi, M. J.
    Wang, S. K.
    Li, X. X.
    Krotov, D. S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (05) : 951 - 962
  • [3] AN UPPER BOUND OF A GENERALIZED UPPER HAMILTONIAN NUMBER OF A GRAPH
    Dzurik, Martin
    [J]. ARCHIVUM MATHEMATICUM, 2021, 57 (05): : 299 - 311
  • [4] An Upper Bound on the Reduction Number of an Ideal
    Kinoshita, Yayoi
    Nishida, Koji
    Sakata, Kensuke
    Shinya, Ryuta
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) : 1690 - 1699
  • [5] AN UPPER BOUND ON THE NUMBER OF CLIQUES IN A GRAPH
    FARBER, M
    HUJTER, M
    TUZA, Z
    [J]. NETWORKS, 1993, 23 (03) : 207 - 210
  • [6] AN UPPER BOUND ON THE RAMSEY NUMBER OF TREES
    GYARFAS, A
    TUZA, Z
    [J]. DISCRETE MATHEMATICS, 1987, 66 (03) : 309 - 310
  • [7] AN UPPER BOUND ON STICK NUMBER OF KNOTS
    Huh, Youngsik
    Oh, Seungsang
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (05) : 741 - 747
  • [8] UPPER BOUND ON PATH NUMBER OF A DIGRAPH
    OBRIEN, RC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 22 (02) : 168 - 174
  • [9] Upper bound on the number of complete maps
    Kovalenko, IN
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 1996, 32 (01) : 65 - 68
  • [10] AN UPPER BOUND FOR THE PATH NUMBER OF A GRAPH
    DONALD, A
    [J]. JOURNAL OF GRAPH THEORY, 1980, 4 (02) : 189 - 201