Descent theory and mapping spaces

被引:0
|
作者
Meadows, Nicholas J. [1 ]
机构
[1] Univ Haifa, 199 Abba Khoushy Rd, IL-3498838 Haifa, Israel
关键词
Model categories; Descent; Higher stacks; Derived categories; Ringed topoi; QUASI-CATEGORIES;
D O I
10.1007/s40062-020-00261-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to develop a theory of (infinity, 1)-stacks, in the sense of Hirschowitz-Simpson's 'Descent Pour Les n-Champs', using the language of quasi-category theory and the author's local Joyal model structure. The main result is a characterization of (infinity, 1)-stacks in terms of mapping space presheaves. An important special case of this theorem gives a sufficient condition for the presheaf of quasi-categories associated to a presheaf of model categories to be a higher stack. In the final section, we apply this result to construct the higher stack of unbounded complexes associated to a ringed site.
引用
收藏
页码:417 / 453
页数:37
相关论文
共 50 条
  • [31] Galois descent of semi-affinoid spaces
    Fantini, Lorenzo
    Turchetti, Daniele
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 1085 - 1114
  • [32] A DESCENT METHOD FOR VARIATIONAL INEQUALITIES IN HILBERT SPACES
    Sadhu, R.
    Nahak, C.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (02): : 43 - 54
  • [33] Galois descent of semi-affinoid spaces
    Lorenzo Fantini
    Daniele Turchetti
    Mathematische Zeitschrift, 2018, 290 : 1085 - 1114
  • [34] Finiteness results in descent theory
    Dèbes, P
    Derome, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 52 - 64
  • [35] DESCENT THEORY FOR BANACH MODULES
    BORCEUX, F
    PELLETIER, JW
    LECTURE NOTES IN MATHEMATICS, 1988, 1348 : 36 - 54
  • [36] ASCENT AND DESCENT OF COMPOSITION OPERATORS ON LORENTZ SPACES
    Bajaj, Daljeet Singh
    Datt, Gopal
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (01): : 195 - 205
  • [37] Generic convergence of descent methods in Banach spaces
    Reich, S
    Zaslavski, AJ
    MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (02) : 231 - 242
  • [38] DESCENT METHOD FOR APPROXIMATION PROBLEMS IN NORMED SPACES
    SCHULTZ, R
    NUMERISCHE MATHEMATIK, 1978, 31 (01) : 77 - 95
  • [39] On descent theory for monoid actions
    Laan, V
    APPLIED CATEGORICAL STRUCTURES, 2004, 12 (5-6) : 479 - 483
  • [40] MAPPING SPACES FROM PROJECTIVE SPACES
    Tsutaya, Mitsunobu
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2016, 18 (01) : 173 - 203