Descent theory and mapping spaces

被引:0
|
作者
Meadows, Nicholas J. [1 ]
机构
[1] Univ Haifa, 199 Abba Khoushy Rd, IL-3498838 Haifa, Israel
关键词
Model categories; Descent; Higher stacks; Derived categories; Ringed topoi; QUASI-CATEGORIES;
D O I
10.1007/s40062-020-00261-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to develop a theory of (infinity, 1)-stacks, in the sense of Hirschowitz-Simpson's 'Descent Pour Les n-Champs', using the language of quasi-category theory and the author's local Joyal model structure. The main result is a characterization of (infinity, 1)-stacks in terms of mapping space presheaves. An important special case of this theorem gives a sufficient condition for the presheaf of quasi-categories associated to a presheaf of model categories to be a higher stack. In the final section, we apply this result to construct the higher stack of unbounded complexes associated to a ringed site.
引用
收藏
页码:417 / 453
页数:37
相关论文
共 50 条
  • [21] Descent theory for derived categories
    Elagin, A. D.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (04) : 748 - 749
  • [22] Descent theory for semiorthogonal decompositions
    Elagin, A. D.
    SBORNIK MATHEMATICS, 2012, 203 (05) : 645 - 676
  • [23] On Descent Theory for Monoid Actions
    Valdis Laan
    Applied Categorical Structures, 2004, 12 : 479 - 483
  • [24] DESCENT FOR COMPACT 0-DIMENSIONAL SPACES
    Janelidze, George
    Sobral, Manuela
    THEORY AND APPLICATIONS OF CATEGORIES, 2008, 21 : 182 - 190
  • [25] EFFECTIVE DESCENT MAPS OF TOPOLOGICAL-SPACES
    REITERMAN, J
    THOLEN, W
    TOPOLOGY AND ITS APPLICATIONS, 1994, 57 (01) : 53 - 69
  • [26] A descent method for variational inequalities in hilbert spaces
    Sadhu, R.
    Nahak, C.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (02): : 43 - 54
  • [27] What are effective descent morphisms of Priestley spaces?
    Janelidze, George
    Sobral, Manuela
    TOPOLOGY AND ITS APPLICATIONS, 2014, 168 : 135 - 143
  • [28] Descent methods with computational errors in Banach spaces
    Reich, Simeon
    Zaslavski, Alexander J.
    OPTIMIZATION, 2020, 69 (7-8) : 1439 - 1450
  • [29] Coherent modules and their descent on relative rigid spaces
    Bosch, S
    Gortz, U
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 495 : 119 - 134
  • [30] Anabelian geometry and descent obstructions on moduli spaces
    Patrikis, Stefan
    Voloch, Jose Felipe
    Zarhin, Yuri G.
    ALGEBRA & NUMBER THEORY, 2016, 10 (06) : 1191 - 1219