Descent theory and mapping spaces

被引:0
|
作者
Meadows, Nicholas J. [1 ]
机构
[1] Univ Haifa, 199 Abba Khoushy Rd, IL-3498838 Haifa, Israel
关键词
Model categories; Descent; Higher stacks; Derived categories; Ringed topoi; QUASI-CATEGORIES;
D O I
10.1007/s40062-020-00261-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to develop a theory of (infinity, 1)-stacks, in the sense of Hirschowitz-Simpson's 'Descent Pour Les n-Champs', using the language of quasi-category theory and the author's local Joyal model structure. The main result is a characterization of (infinity, 1)-stacks in terms of mapping space presheaves. An important special case of this theorem gives a sufficient condition for the presheaf of quasi-categories associated to a presheaf of model categories to be a higher stack. In the final section, we apply this result to construct the higher stack of unbounded complexes associated to a ringed site.
引用
收藏
页码:417 / 453
页数:37
相关论文
共 50 条
  • [1] Descent theory and mapping spaces
    Nicholas J. Meadows
    Journal of Homotopy and Related Structures, 2020, 15 : 417 - 453
  • [2] Nonabelian Hodge theory for klt spaces and descent theorems for vector bundles
    Greb, Daniel
    Kebekus, Stefan
    Peternell, Thomas
    Taji, Behrouz
    COMPOSITIO MATHEMATICA, 2019, 155 (02) : 289 - 323
  • [3] Local theory of integral Banach mapping spaces
    Dong, Pingchuan
    Jiang, Haiyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 814 - 824
  • [4] A CONTRIBUTION TO THEORY OF GEODESIC MAPPING OF RIEMANNEAN SPACES
    SINYUKOV, NS
    DOKLADY AKADEMII NAUK SSSR, 1966, 169 (04): : 770 - &
  • [5] Descent for Priestley spaces
    Dias, Margarida
    Sobral, Manuela
    APPLIED CATEGORICAL STRUCTURES, 2006, 14 (03) : 229 - 241
  • [6] Descent for Priestley Spaces
    Margarida Dias
    Manuela Sobral
    Applied Categorical Structures, 2006, 14 : 229 - 241
  • [8] Descent Theory
    Lipman, Joseph
    Hashimoto, Mitsuyasu
    FOUNDATIONS OF GROTHENDIECK DUALITY FOR DIAGRAMS OF SCHEMES, 2009, 1960 : 355 - 361
  • [9] Descent for nonarchimedean analytic spaces
    Conrad, Brian
    Temkin, Michael
    TUNISIAN JOURNAL OF MATHEMATICS, 2021, 3 (04) : 689 - 748
  • [10] Berkovich spaces and tubular descent
    Ben-Bassat, Oren
    Temkin, Michael
    ADVANCES IN MATHEMATICS, 2013, 234 : 217 - 238