On a Class of Implicit-Explicit Runge-Kutta Schemes for Stiff Kinetic Equations Preserving the Navier-Stokes Limit

被引:17
|
作者
Hu, Jingwei [1 ]
Zhang, Xiangxiong [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Boltzmann equation; BGK/ES-BGK models; IMEX Runge-Kutta schemes; Compressible Euler equations; Navier-Stokes equations; HYPERBOLIC SYSTEMS; BOLTZMANN-EQUATION; BALANCE LAWS; RELAXATION;
D O I
10.1007/s10915-017-0499-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number goes to zero), their asymptotic behavior at the Navier-Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we analyze a class of existing IMEX RK schemes and show that, under suitable initial conditions, they can capture the NS limit without resolving the small parameter , i.e., , , where m is the order of the explicit RK part in the IMEX scheme. Extensive numerical tests for BGK and ES-BGK models are performed to verify our theoretical results.
引用
收藏
页码:797 / 818
页数:22
相关论文
共 50 条
  • [31] AN IMPLICIT-EXPLICIT UPWIND ALGORITHM FOR THE PARABOLIZED NAVIER-STOKES EQUATIONS
    刘铁刚
    王汝权
    宋松和
    [J]. Acta Mechanica Sinica, 1994, (02) : 129 - 135
  • [32] Numerical analyses of Runge-Kutta implicit-explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models
    Lock, S. -J.
    Wood, N.
    Weller, H.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (682) : 1654 - 1669
  • [33] RELAXATION RUNGE-KUTTA METHODS: FULLY DISCRETE EXPLICIT ENTROPY-STABLE SCHEMES FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS
    Ranocha, Hendrik
    Sayyari, Mohammed
    Dalcin, Lisandro
    Parsani, Matteo
    Ketcheson, David I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A612 - A638
  • [34] Analysis and application of high order implicit Runge-Kutta schemes to collocated finite volume discretization of the incompressible Navier-Stokes equations
    Kazemi-Kamyab, V.
    van Zuijlen, A. H.
    Bijl, H.
    [J]. COMPUTERS & FLUIDS, 2015, 108 : 107 - 115
  • [35] A class of new explicit Runge-Kutta schemes
    Wang, B
    Ji, ZZ
    Zeng, QC
    [J]. PROGRESS IN NATURAL SCIENCE, 1996, 6 (02): : 195 - 205
  • [36] A class of new explicit Runge-Kutta schemes
    王斌
    季仲贞
    曾庆存
    [J]. Progress in Natural Science:Materials International, 1996, (02) : 69 - 79
  • [37] Parallelization of Implicit-Explicit Runge-Kutta methods for cluster of PCs
    Mantas, JM
    González, P
    Carrillo, JA
    [J]. EURO-PAR 2005 PARALLEL PROCESSING, PROCEEDINGS, 2005, 3648 : 815 - 825
  • [38] LINEAR-STABILITY CONDITION FOR EXPLICIT RUNGE-KUTTA METHODS TO SOLVE THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    MULLER, B
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (02) : 139 - 151
  • [39] STABILITY OF A RUNGE-KUTTA METHOD FOR THE NAVIER-STOKES EQUATION
    SOWA, J
    [J]. BIT, 1990, 30 (03): : 542 - 560
  • [40] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167