LINEAR-STABILITY CONDITION FOR EXPLICIT RUNGE-KUTTA METHODS TO SOLVE THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:8
|
作者
MULLER, B
机构
[1] DLR, Institut für Theoretische Strömungsmechanik, Göttingen, D-3400, Bunsenstr
关键词
D O I
10.1002/mma.1670120205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear stability condition is dervied for explicit Runge–Kutta methods to solve the compressible Navier–Stokes equations by central second‐order finite‐difference and finite‐volume methods. The equations in non‐conservative form are simplified to quasilinear form, and the eigenvalues of the resulting coefficient matrices are determined for general co‐ordinates. Assuming a well‐posed Cauchy problem with constant coefficients, the von Neumann stability analysis yields sufficient stability conditions for viscous–inviscid operator‐splitting schemes. They have been applied in computational aerodynamics to solve the compressible Navier–Stokes equations by an unsplit explicit Runge–Kutta finite‐volume method. Copyright © 1990 John Wiley & Sons, Ltd
引用
收藏
页码:139 / 151
页数:13
相关论文
共 50 条
  • [1] Optimal explicit Runge-Kutta methods for compressible Navier-Stokes equations
    Citro, V
    Giannetti, F.
    Sierra, J.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 511 - 526
  • [2] Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations
    Kennedy, CA
    Carpenter, MH
    Lewis, RM
    [J]. APPLIED NUMERICAL MATHEMATICS, 2000, 35 (03) : 177 - 219
  • [3] Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations
    Sanderse, B.
    Koren, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (08) : 3041 - 3063
  • [4] Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations
    Colomes, Oriol
    Badia, Santiago
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 105 (05) : 372 - 400
  • [5] Enhanced Runge-Kutta/Implicit methods for solving the Navier-Stokes equations
    Rossow, C. -C.
    [J]. NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS VI, 2007, 96 : 202 - 209
  • [6] Computer Aided Analysis of Preconditioned Multistage Runge-Kutta Methods Applied to Solve the Compressible Reynolds Averaged Navier-Stokes Equations
    Langer, Stefan
    [J]. NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS X, 2016, 132 : 525 - 536
  • [7] RELAXATION RUNGE-KUTTA METHODS: FULLY DISCRETE EXPLICIT ENTROPY-STABLE SCHEMES FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS
    Ranocha, Hendrik
    Sayyari, Mohammed
    Dalcin, Lisandro
    Parsani, Matteo
    Ketcheson, David I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A612 - A638
  • [8] STABILITY OF A RUNGE-KUTTA METHOD FOR THE NAVIER-STOKES EQUATION
    SOWA, J
    [J]. BIT, 1990, 30 (03): : 542 - 560
  • [9] Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations
    Sanderse, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 100 - 131
  • [10] Multirate partitioned Runge-Kutta methods for coupled Navier-Stokes
    Kang, Shinhoo
    Dener, Alp
    Hamilton, Aidan
    Zhang, Hong
    Constantinescu, Emil M.
    Jacob, Robert L.
    [J]. COMPUTERS & FLUIDS, 2023, 264