Multirate partitioned Runge-Kutta methods for coupled Navier-Stokes

被引:1
|
作者
Kang, Shinhoo [1 ]
Dener, Alp [1 ]
Hamilton, Aidan [3 ]
Zhang, Hong [1 ]
Constantinescu, Emil M. [1 ]
Jacob, Robert L. [2 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Environm Sci Div, Lemont, IL USA
[3] Univ Delaware, Dept Math Sci, Newark, DE USA
关键词
Stiff problem; Coupling; Fluid-fluid interaction; Multirate integrator; Navier-Stokes; BULK PARAMETERIZATION; TIME INTEGRATION; MODEL; IMPLEMENTATION; SCHEMES; HEAT;
D O I
10.1016/j.compfluid.2023.105964
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Earth system models are complex integrated models of atmosphere, ocean, sea ice, and land surface. Coupling the components can be a significant challenge due to the difference in physics, temporal, and spatial scales. This study explores multirate partitioned Runge-Kutta methods for the fluid-fluid interaction problem and demonstrates its parallel performance by using the PETSc library. We consider compressible Navier-Stokes equations with gravity coupled through a rigid-lid interface. Our large-scale numerical experiments reveal that multirate partitioned Runge-Kutta coupling schemes (1) can conserve total mass; (2) have second-order accuracy in time; and (3) provide favorable strong- and weak-scaling performance on modern computing architectures. We also show that the speedup factors of multirate partitioned Runge-Kutta methods match theoretical expectations over their base (single-rate) method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multirate Partitioned Runge-Kutta Methods
    M. Günther
    A. Kværnø
    P. Rentrop
    [J]. BIT Numerical Mathematics, 2001, 41 : 504 - 514
  • [2] Multirate partitioned Runge-Kutta methods
    Günther, M
    Kværno, A
    Rentrop, P
    [J]. BIT, 2001, 41 (03): : 504 - 514
  • [3] Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations
    Colomes, Oriol
    Badia, Santiago
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 105 (05) : 372 - 400
  • [4] Optimal explicit Runge-Kutta methods for compressible Navier-Stokes equations
    Citro, V
    Giannetti, F.
    Sierra, J.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 511 - 526
  • [5] Enhanced Runge-Kutta/Implicit methods for solving the Navier-Stokes equations
    Rossow, C. -C.
    [J]. NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS VI, 2007, 96 : 202 - 209
  • [6] STABILITY OF A RUNGE-KUTTA METHOD FOR THE NAVIER-STOKES EQUATION
    SOWA, J
    [J]. BIT, 1990, 30 (03): : 542 - 560
  • [7] Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations
    Sanderse, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 100 - 131
  • [8] Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations
    Sanderse, B.
    Koren, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (08) : 3041 - 3063
  • [9] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04) : 365 - 372
  • [10] On multisymplecticity of partitioned Runge-Kutta methods
    Ryland, Brett N.
    Mclachlan, Robert I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03): : 1318 - 1340