Multirate partitioned Runge-Kutta methods for coupled Navier-Stokes

被引:1
|
作者
Kang, Shinhoo [1 ]
Dener, Alp [1 ]
Hamilton, Aidan [3 ]
Zhang, Hong [1 ]
Constantinescu, Emil M. [1 ]
Jacob, Robert L. [2 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Environm Sci Div, Lemont, IL USA
[3] Univ Delaware, Dept Math Sci, Newark, DE USA
关键词
Stiff problem; Coupling; Fluid-fluid interaction; Multirate integrator; Navier-Stokes; BULK PARAMETERIZATION; TIME INTEGRATION; MODEL; IMPLEMENTATION; SCHEMES; HEAT;
D O I
10.1016/j.compfluid.2023.105964
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Earth system models are complex integrated models of atmosphere, ocean, sea ice, and land surface. Coupling the components can be a significant challenge due to the difference in physics, temporal, and spatial scales. This study explores multirate partitioned Runge-Kutta methods for the fluid-fluid interaction problem and demonstrates its parallel performance by using the PETSc library. We consider compressible Navier-Stokes equations with gravity coupled through a rigid-lid interface. Our large-scale numerical experiments reveal that multirate partitioned Runge-Kutta coupling schemes (1) can conserve total mass; (2) have second-order accuracy in time; and (3) provide favorable strong- and weak-scaling performance on modern computing architectures. We also show that the speedup factors of multirate partitioned Runge-Kutta methods match theoretical expectations over their base (single-rate) method.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Partitioned Krylov subspace iteration in implicit Runge-Kutta methods
    Dekker, K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 488 - 494
  • [42] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [43] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [44] General order conditions for stochastic partitioned Runge-Kutta methods
    Anmarkrud, Sverre
    Debrabant, Kristian
    Kvaerno, Anne
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 257 - 280
  • [45] Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage
    Tang, Wensheng
    Lang, Guangming
    Luo, Xuqiong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 279 - 287
  • [46] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    [J]. ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [47] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [48] Partitioned Runge-Kutta methods in Lie-group setting
    Engo, K
    [J]. BIT NUMERICAL MATHEMATICS, 2003, 43 (01) : 21 - 39
  • [49] Runge-Kutta间断Galerkin法在求解Navier-Stokes方程中的应用
    苏铭德
    张景明
    [J]. 计算物理, 1999, (02) : 57 - 66
  • [50] RELAXATION RUNGE-KUTTA METHODS: FULLY DISCRETE EXPLICIT ENTROPY-STABLE SCHEMES FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS
    Ranocha, Hendrik
    Sayyari, Mohammed
    Dalcin, Lisandro
    Parsani, Matteo
    Ketcheson, David I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A612 - A638