Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces

被引:93
|
作者
Bourgain, Jean [1 ]
Li, Dong [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08544 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BESOV; EXISTENCE; FLUID; HYDRODYNAMICS; DYNAMICS;
D O I
10.1007/s00222-014-0548-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the -dimensional incompressible Euler equation, the standard energy method gives local wellposedness for initial velocity in Sobolev space , . The borderline case was a folklore open problem. In this paper we consider the physical dimension and show that if we perturb any given smooth initial data in norm, then the corresponding solution can have infinite norm instantaneously at . In a companion paper [1] we settle the 3D and more general cases. The constructed solutions are unique and even -smooth in some cases. To prove these results we introduce a new strategy: large Lagrangian deformation induces critical norm inflation. As an application we also settle several closely related open problems.
引用
收藏
页码:97 / 157
页数:61
相关论文
共 50 条
  • [1] Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces
    Jean Bourgain
    Dong Li
    Inventiones mathematicae, 2015, 201 : 97 - 157
  • [2] Strong Ill-Posedness of the 3D Incompressible Euler Equation in Borderline Spaces
    Bourgain, Jean
    Li, Dong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (16) : 12155 - 12264
  • [3] Ill-posedness for the Incompressible Euler Equations in Critical Sobolev Spaces
    Elgindi T.M.
    Jeong I.-J.
    Annals of PDE, 3 (1)
  • [4] A simple ill-posedness proof for incompressible Euler equations in critical Sobolev spaces
    Kim, Junha
    Jeong, In-Jee
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)
  • [5] Ill-posedness for the Burgers equation in Sobolev spaces
    Jinlu Li
    Yanghai Yu
    Weipeng Zhu
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 189 - 197
  • [6] Ill-posedness for the Burgers equation in Sobolev spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 189 - 197
  • [7] STRONG ILL-POSEDNESS FOR SQG IN CRITICAL SOBOLEV SPACES
    Jeong, In-Jee
    Kim, Junha
    ANALYSIS & PDE, 2024, 17 (01): : 133 - 170
  • [9] Non existence and strong ill-posedness in Ck and Sobolev spaces for SQG
    Cordoba, Diego
    Martinez-Zoroa, Luis
    ADVANCES IN MATHEMATICS, 2022, 407
  • [10] Ill-posedness for the Euler equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74