Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces

被引:93
|
作者
Bourgain, Jean [1 ]
Li, Dong [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08544 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BESOV; EXISTENCE; FLUID; HYDRODYNAMICS; DYNAMICS;
D O I
10.1007/s00222-014-0548-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the -dimensional incompressible Euler equation, the standard energy method gives local wellposedness for initial velocity in Sobolev space , . The borderline case was a folklore open problem. In this paper we consider the physical dimension and show that if we perturb any given smooth initial data in norm, then the corresponding solution can have infinite norm instantaneously at . In a companion paper [1] we settle the 3D and more general cases. The constructed solutions are unique and even -smooth in some cases. To prove these results we introduce a new strategy: large Lagrangian deformation induces critical norm inflation. As an application we also settle several closely related open problems.
引用
收藏
页码:97 / 157
页数:61
相关论文
共 50 条
  • [31] Sharp ill-posedness for the generalized Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [32] REMARK ON WELL-POSEDNESS AND ILL-POSEDNESS FOR THE KDV EQUATION
    Kato, Takamori
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [33] The local ill-posedness of the modified KdV equation
    Department of Mathematics, University of California, Santa Barbara, CA 93106, United States
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 4 (529-535):
  • [34] Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation
    Ibrahim, Slim
    Lin, Quyuan
    Titi, Edriss S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 557 - 577
  • [35] The local ill-posedness of the modified KdV equation
    Birnir, B
    Ponce, G
    Svanstedt, N
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (04): : 529 - 535
  • [36] Strong illposedness of the incompressible Euler equation in integer Cm spaces
    Jean Bourgain
    Dong Li
    Geometric and Functional Analysis, 2015, 25 : 1 - 86
  • [37] Remark on the local ill-posedness for KdV equation
    Tzvetkov, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (12): : 1043 - 1047
  • [38] The local degree of ill-posedness and the autoconvolution equation
    Faculty of Mathematics, TU Chemnitz-Zwickau, D-09107 Chemnitz, Germany
    Nonlinear Anal Theory Methods Appl, 6 (3323-3332):
  • [39] The local degree of ill-posedness and the autoconvolution equation
    Fleischer, G
    Hofmann, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3323 - 3332
  • [40] Ill-Posedness of Free Boundary Problem of the Incompressible Ideal MHD
    Chengchun Hao
    Tao Luo
    Communications in Mathematical Physics, 2020, 376 : 259 - 286