Minimum rectilinear Steiner tree of n points in the unit square

被引:1
|
作者
Dumitrescu, Adrian [1 ]
Jiang, Minghui [2 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53201 USA
[2] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
关键词
Minimum rectilinear Steiner tree; Integer partition; Packing; Covering; HEURISTIC ALGORITHMS; DISTANCE;
D O I
10.1016/j.comgeo.2017.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chung and Graham conjectured (in 1981) that n points in the unit square [0,1](2) can be connected by a rectilinear Steiner tree of length at most root n + 1. Here we confirm this conjecture for small values of n, and for some new infinite sequences of values of n (but not for all n). As an interesting byproduct we obtain close rational approximations of root n from below, for those n. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [41] Approximation algorithms for the rectilinear Steiner tree problem with obstacles
    Fujimoto, M
    Takafuji, D
    Watanabe, T
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1362 - 1365
  • [42] GPSO Hybrid Algorithm for Rectilinear Steiner Tree Optimization
    Nath, Subhrapratim
    Gupta, Sagnik
    Biswas, Saptarshi
    Banerjee, Rupam
    Sing, Jamuna Kanta
    Sarkar, Subir Kumar
    PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2020), 2020, : 365 - 369
  • [43] RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE
    GAREY, MR
    JOHNSON, DS
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) : 826 - 834
  • [44] The Steiner tree problem for terminals on the boundary of a rectilinear polygon
    Cheng, SW
    THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) : 213 - 238
  • [45] The polygonal contraction heuristic for rectilinear Steiner tree construction
    Wang, Yin
    Hong, Xianlong
    Jing, Tong
    Yang, Yang
    Hu, Xiaodong
    Yan, Guiying
    ASP-DAC 2005: PROCEEDINGS OF THE ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, VOLS 1 AND 2, 2005, : 1 - 6
  • [46] Maximin distance for n points in a unit square or a unit circle
    Akiyama, J
    Mochizuki, R
    Mutoh, N
    Nakamura, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2002, 2866 : 9 - 13
  • [47] Fast optimal algorithms for the minimum rectilinear Steiner arborescence problem
    Leung, KS
    Cong, J
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1568 - 1571
  • [48] LARGEST MINIMAL RECTILINEAR STEINER TREES FOR A SET OF N POINTS ENCLOSED IN A RECTANGLE WITH GIVEN PERIMETER
    CHUNG, FRK
    HWANG, FK
    NETWORKS, 1979, 9 (01) : 19 - 36
  • [49] Construction of All Rectilinear Steiner Minimum Trees on the Hanan Grid
    Lin, Sheng-En David
    Kim, Dae Hyun
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD'18), 2018, : 18 - 25
  • [50] Approximating Steiner Trees and Forests with Minimum Number of Steiner Points
    Cohen, Nachshon
    Nutov, Zeev
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2014, 2015, 8952 : 95 - 106