Minimum rectilinear Steiner tree of n points in the unit square

被引:1
|
作者
Dumitrescu, Adrian [1 ]
Jiang, Minghui [2 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53201 USA
[2] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
关键词
Minimum rectilinear Steiner tree; Integer partition; Packing; Covering; HEURISTIC ALGORITHMS; DISTANCE;
D O I
10.1016/j.comgeo.2017.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chung and Graham conjectured (in 1981) that n points in the unit square [0,1](2) can be connected by a rectilinear Steiner tree of length at most root n + 1. Here we confirm this conjecture for small values of n, and for some new infinite sequences of values of n (but not for all n). As an interesting byproduct we obtain close rational approximations of root n from below, for those n. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [21] RSR: A new Rectilinear Steiner Minimum Tree approximation for FPGA placement and global routing
    de Vicente, J
    Lanchares, J
    Hermida, R
    24TH EUROMICRO CONFERENCE - PROCEEDING, VOLS 1 AND 2, 1998, : 192 - 195
  • [22] A polynomial time approximation scheme for rectilinear Steiner minimum tree construction in the presence of obstacles
    Jian, L
    Ying, Z
    Shragowitz, E
    Karypis, G
    ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 781 - 784
  • [23] AN 0 (N LOG N) HEURISTIC ALGORITHM FOR THE RECTILINEAR STEINER MINIMAL TREE PROBLEM
    SMITH, JM
    LEE, DT
    LIEBMAN, JS
    ENGINEERING OPTIMIZATION, 1980, 4 (04) : 179 - 192
  • [24] NEW ALGORITHMS FOR THE RECTILINEAR STEINER TREE PROBLEM
    HO, JM
    VIJAYAN, G
    WONG, CK
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1990, 9 (02) : 185 - 193
  • [25] SAT based rectilinear steiner tree construction
    Kundu, Sudeshna
    Roy, Suchismita
    Mukherjee, Shyamapada
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 623 - 627
  • [26] A NEW APPROACH TO THE RECTILINEAR STEINER TREE PROBLEM
    HO, JM
    VIJAYAN, G
    WONG, CK
    26TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, 1989, : 161 - 166
  • [27] Rectilinear Steiner minimal tree among obstacles
    Yang, Y
    Zhu, Q
    Jing, T
    Hong, XL
    Wang, Y
    2003 5TH INTERNATIONAL CONFERENCE ON ASIC, VOLS 1 AND 2, PROCEEDINGS, 2003, : 348 - 351
  • [28] A TIGHT WORST CASE BOUND FOR THE PERFORMANCE RATIO OF HEURISTICS FOR THE MINIMUM RECTILINEAR STEINER TREE PROBLEM
    DESOUZA, CC
    RIBEIRO, CC
    OR SPEKTRUM, 1990, 12 (02) : 109 - 111
  • [29] An evolution algorithm for the rectilinear Steiner tree problem
    Yang, B
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 241 - 249
  • [30] Two special cases for rectilinear Steiner minimum trees
    Du, DZ
    Shragowitz, E
    Wan, PJ
    NETWORK OPTIMIZATION, 1997, 450 : 221 - 233