Boundedness of Riesz potentials in nonhomogeneous spaces

被引:0
|
作者
Hu Guoen [1 ]
Meng Yan [2 ]
Yang Dachun
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
关键词
Riesz potential; Lebesgue space; Hardy space; RBMO space; boundedness; non-doubling measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of linear operators including Riesz potentials on R(d) with a non-negative Radon measure mu, which only satisfies some growth condition, the authors prove that their boundedness in Lebesgue spaces is equivalent to their boundedness in the Hardy space or certain weak type endpoint estimates, respectively. As an application, the authors obtain several new end estimates.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [21] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Cao, Jun
    Yang, Dachun
    Yang, Sibei
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 99 - 114
  • [22] Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces
    Maas, Jan
    van Neerven, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (08) : 2410 - 2475
  • [23] BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY TYPE SPACES
    Burenkov, V., I
    Senouci, M. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (04):
  • [24] BOUNDEDNESS OF CESARO AND RIESZ MEANS IN VARIABLE DYADIC HARDY SPACES
    Szarvas, Kristof
    Weisz, Ferenc
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (03) : 675 - 696
  • [25] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Jun Cao
    Dachun Yang
    Sibei Yang
    Revista Matemática Complutense, 2013, 26 : 99 - 114
  • [26] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Victor I. Burenkov
    Amiran Gogatishvili
    Vagif S. Guliyev
    Rza Ch. Mustafayev
    Potential Analysis, 2011, 35 : 67 - 87
  • [27] ON THE BOUNDEDNESS OF THE MAXIMAL OPERATOR AND RIESZ POTENTIAL IN THE MODIFIED MORREY SPACES
    Aykol, Canay
    Yildirim, M. Esra
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2014, 63 (02): : 1 - 11
  • [28] Boundedness of the Riesz potential in central Morrey-Orlicz spaces
    Burtseva, Evgeniya
    Maligranda, Lech
    Matsuoka, Katsuo
    POSITIVITY, 2022, 26 (01)
  • [29] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [30] Boundedness of Commutators of Marcinkiewicz Integrals on Nonhomogeneous Metric Measure Spaces
    Lu, Guanghui
    Tao, Shuangping
    JOURNAL OF FUNCTION SPACES, 2015, 2015