Asymptotics for the time dependent Ginzburg-Landau equations

被引:3
|
作者
Fan, JS [1 ]
Ding, SJ
机构
[1] Nanjing Forestry Univ, Basic Courses Div, Nanjing 210037, Jiangsu, Peoples R China
[2] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
关键词
asymptotic behavior; Ginzburg-Landau equations; heat flow for harmonic maps;
D O I
10.1006/jdeq.1998.3539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that as epsilon --> 0 the solution of the complex Ginzburg-Landau equation u(t) - Delta u = (1/epsilon(2)) u(1-\u\(2)), in Omega x R+ converges to the unique solution of the heat flow for harmonic maps Into S-1 under the assumption that the initial and boundary maps have zero degree. (C) 1999 Academic Press.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条
  • [31] The Superconductivity Equations of Ginzburg-Landau
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 113 - 121
  • [32] A posteriori error analysis for time-dependent Ginzburg-Landau type equations
    Sören Bartels
    Numerische Mathematik, 2005, 99 : 557 - 583
  • [33] TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS FOR HARD-MODE INSTABILITIES
    YAMAFUJI, K
    TOKO, K
    URAHAMA, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) : 3819 - 3825
  • [34] Time-dependent Ginzburg-Landau equations for rotating superconductors with paramagnetic impurities
    Shahabasyan, K. M.
    Shahabasyan, M. K.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (06) : 257 - 259
  • [35] Ginzburg-Landau equations and their generalizations
    Sergeev, Armen
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (02): : 294 - 305
  • [36] A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations
    Li, Buyang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 238 - 250
  • [37] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
    Li, Minsi
    Gu, Jiahong
    Du, Long
    Zhong, Hongwei
    Zhou, Lijuan
    Chen, Qinghua
    CHINESE PHYSICS B, 2020, 29 (03)
  • [38] NONLOCAL GINZBURG-LANDAU EQUATIONS
    XU, HH
    TSAI, CH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1990, 13 (02) : 153 - 166
  • [39] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions
    Bethuel, F
    Brezis, H
    Orlandi, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) : 432 - 520
  • [40] Extended Time-Dependent Ginzburg-Landau Theory
    Grigorishin, Konstantin V.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 203 (3-4) : 262 - 308